精英家教网 > 高中数学 > 题目详情
9.双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线方程为(  )
A.y=±3xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

分析 将双曲线的方程的右边的“1”换为“0”可得双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线方程为$\frac{{x}^{2}}{3}$-y2=0,整理后就得到双曲线的渐近线方程.

解答 解:∵双曲线的方程为$\frac{{x}^{2}}{3}$-y2=1,
∴将右边的“1”换为“0”可得:
双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线方程为$\frac{{x}^{2}}{3}$-y2=0,即y=±$\frac{\sqrt{3}}{3}$x.
故选:D.

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在区间[-3,3]内随机取出一个数a,使得1∈{x|2x2+ax-a2>0}的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$a={2^x},b={4^{\frac{2}{3}}}$,则log2b=$\frac{4}{3}$,满足logab≤1的实数x的取值范围是$({-∞,0})∪[{\frac{4}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(ax+1)-ax-lna.
(1)讨论f(x)的单调性;
(2)若h(x)=ax-f(x),当h(x)>0恒成立时,求a的取值范围;
(3)若存在$-\frac{1}{a}<{x_1}<0$,x2>0,使得f(x1)=f(x2)=0,判断x1+x2与0的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:“?x0∈R“,x02-1≤0的否定¬p为(  )
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知一个几何体的三视图如图所示,其中俯视图为半圆面,则该几何体的体积为(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平行于直线l:x+2y-3=0,且与l的距离为2$\sqrt{5}$的直线的方程为(  )
A.x+2y+7=0B.x+2y-13=0或x+2y+7=0
C.x+2y+13=0D.x+2y+13=0或x+2y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=a+(a-2)i(a∈R,i是虚数单位)为实数,则$\int_0^a{\sqrt{4-{x^2}}dx}$的值是(  )
A.2+πB.$2+\frac{π}{2}$C.πD.4+4π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F为抛物线C:y2=8x,曲线y=$\frac{k}{x}$(k>0)与C交于点A,直线FA恰与曲线y=$\frac{k}{x}$(k>0)相切于点A,直线FA于C的准线交于点B,则$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案