精英家教网 > 高中数学 > 题目详情
记数列{an}的前n项和为Sn,若不等式an2+
Sn2
n2
≥ma12对任意等差数列{an}及任意正整数n都成立,则实数m的最大值为
 
考点:数列的求和
专题:等差数列与等比数列
分析:
1
2
(n-1)d=m,由an2+
Sn2
n2
=an2+[a1+
1
2
(n-1)d]2=5(m-
3a1
5
2+2a12-
9a12
5
,当m=
3a1
5
时,取到最小值,由此能求出结果.
解答: 解:an2+
Sn2
n2
=an2+
1
n2
[na1+
1
2
n(n-1)d]2
=an2+[a1+
1
2
(n-1)d]2
1
2
(n-1)d=m,
an2+
Sn2
n2
=(a1+2m)2+(a1+m)2
=2a12+6ma1+5m2
=5(m-
3a1
5
2+2a12-
9a12
5

当m=
3a1
5
时,取到最小值
1
2
(n-1)d=
3a1
5
,即n=
6a1
5d
+1

∵不等式an2+
Sn2
n2
≥ma12对任意等差数列{an}及任意正整数n都成立,
∴m
1
5

∴实数m的最大值为
1
5

故答案为:
1
5
点评:本题考查实数的最大值的求法,是中档题,解题时要认真审题,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,
a
b
的夹角为60°,求:
(1)
a
b
方向上的投影;
(2)
c
a
+
b
d
=
a
+2
b
的夹角为锐角,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}及fn(x)=a1x+a2x2+…anxn,fn(-1)=(-1)nn,n∈N+
(1)求a1,a2,a3的值,并求数列{an}的通项公式;
(2)若(
1
2
n•an
1
4
m2+
3
2
m-1对一切正整数n恒成立,求实数m的取值范围;
(3)求证:fn
1
3
)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-2x-3, x≤0
-x2, x>0
,若f(a)=-4,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程sinx=lgx在x∈[0,2π]上根的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y的等差中项,等比中项的平方,1构成一个等差数列,那么x+y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(-x2+ax+a),若f(x)>1对一切x∈[1,2]恒成立,求实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列特殊的不等式:
52-22
5-2
≥2•
7
2
          
45-35
42-32
5
2
•(
7
2
3
98-28
93-23
8
3
•(
11
2
5 
910-510
95-55
≥2•75

由以上特殊不等式,可以猜测:当a>b>0,s、r∈Z时,有
as-bs
ar-br
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y为实数,若9x2+y2=12,则xy的最大值是
 

查看答案和解析>>

同步练习册答案