精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sinx,g(x)=2sin(
π
2
-x),直线x=m与f(x),g(x)的图象分别交于M,N两点,则|MN|得最大值为(  )
A、2
B、2
2
C、4
D、4
2
考点:函数的图象与图象变化
专题:函数的性质及应用,三角函数的求值
分析:首先,化简g(x)=2sin(
π
2
-x),然后,借助于三角公式,利用辅助角公式进行求解.
解答: 解:∵g(x)=2sin(
π
2
-x)=2cosx,
∴|MN|=|f(m)-g(m)|=2|sinm-cosm|
=2
2
|sin(m-
π
4
)|

|MN|min=2
2

故选B.
点评:本题重点考查三角函数的图象与性质,灵活运用公式解题是关键.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当对数logx-1(5+4x)有意义时,x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某人向东走xkm后,向左转150°,然后朝这个方向走3km,结果他离原出发点恰好为
3
km,则x的值为
 
km.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左、右焦点分别为F1、F2,F1F2=
10
,P是y轴正半轴上一点,PF1交椭圆于点A,若AF1⊥PF2,且△APF2的内切圆半径为
2
2
,则椭圆的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“直线l⊥平面α内的无数条直线”的充要条件是“l⊥α”,命题q:若平面α⊥平面β,直线a?β,则“a⊥α”是“a∥β”的充分不必要条件,则下列命题中正确的(  )
A、p∧qB、p∨¬q
C、¬p∧¬qD、¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的俯视图是正方形,则该几何体不可能是(  )
A、圆柱B、圆锥
C、三棱柱D、四棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(  )
A、
352
3
cm3
B、
320
3
cm3
C、
224
3
cm3
D、
160
3
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[0,1],求函数g(x)=f(x+m)+f(x-m)(m>0)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某家庭手工坊生产某种儿童玩具,每件玩具的成本为10元,并且每件玩具的加工费为2元,设该手工厂作坊每件玩具的卖出价为x元(15≤x≤21),根据市场调查,日销售量c=
2k
x2-128
(k为常数).当每件玩具的出厂价为20元时,日销售量为10件.
(1)求该手工作坊的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的售价为多少元时,该手工作坊的利润y最大,并求y的最大值.

查看答案和解析>>

同步练习册答案