精英家教网 > 高中数学 > 题目详情
11.已知x,y的取值如下表:
x0123
y2.24.34.86.7
从散点图分析,y与x线性相关,且回归直线方程为$\widehat{y}$=0.85x+a,则a=3.225.

分析 先求出横标和纵标的平均数,写出样本中心点,结合已知的线性回归方程,把样本中心点代入求出a的值.

解答 解:∵$\overline{x}$=1.5,$\overline{y}$=4.5,
∴这组数据的样本中心点是(1.5,4.5),
∵回归直线方程为$\widehat{y}$=0.85x+a,
把样本中心点代入得4.5=0.85×1.5+a,
解得:a=3.225,
故答案为:3.225

点评 本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(4,3),$\overrightarrow{c}$=(5,-2)
(1)若$(\overrightarrow a+t\overrightarrow b)⊥\overrightarrow c$,求实数t的值;
(2)试用$\overrightarrow a,\overrightarrow b$表示$\overrightarrow c$;
(3)若$\overrightarrow a=\overrightarrow{OA},\overrightarrow b=\overrightarrow{OB}$,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等差数列{an}中,a1=3,a4=2a2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{3}^{n-1}}{n}$•an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=1,a2=λ-1,an+2-an=λ,n∈N*,其中λ为常数,
(1)若λ=4,求数列{an}的前20项和S20
(2)是否存在实数λ,使得{an}为等差数列?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某休闲农庄有一块长方形鱼塘ABCD,AB=100米,BC=50$\sqrt{3}$米,为了便于游客休闲散步,该农庄决定在鱼塘内建3条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上(不含顶点),且∠EOF=90°.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线f(x)=x2+x+1在点(1,3)处的切线方程为(  )
A.2x-y+1=0B.4x-y-1=0C.x-y+2=0D.3x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和Sn满足${S_n}=\frac{3}{2}{a_n}-\frac{1}{2}$,数列{bn}满足bn=2log3an+1,其中n∈N*.(I)求数列{an}和{bn}的通项公式;(II)设${c_n}=\frac{b_n}{a_n}$,数列{cn}的前n项和为Tn,若${T_n}<{c^2}-2c$对n∈N*恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2-sin(2x+\frac{π}{6})-2{sin^2}$x,x∈R
(1)求函数f(x)的单调区间;
(2)记△ABC的内角A,B,C的对边边长分别为a,b,c,若$f(\frac{B}{2})=1,b=1,c=\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“?x0∈R,x2+3x+2≤0”的否定是(  )
A.“?x∈R,x2+3x+2>0”B.“?x0∉R,x2+3x+2≤0”
C.“?x∈R,x2+3x+2≤0”D.“?x0∈R,x2+3x+2>0”

查看答案和解析>>

同步练习册答案