精英家教网 > 高中数学 > 题目详情
已知抛物线C的方程为y2=2x,焦点为F,
(1)若C的准线与x轴的交点为D,过D的直线l与C交于A,B两点,且|
.
FA
|=2|
.
FB
|,求直线l的斜率;
(2)设点P是C上的动点,点R,N在y轴上,圆M:(x-1)2+y2=1内切于△PRN,求△PRN面积的最小值.
分析:(1)设A(x1,y1),B(x2,y2),由|FA|=2|FB|,得x1-2x2=
1
2
,将直线与抛物线方程联立可得x1+x2,x1x2 的值,解出x1,x2,从而问题得解.
(2)设P(x0,y0),R(0,b),N(0,c),且b>c,则直线PR的方程可得,由题设知,圆心(1,0)到直线PR的距离为1,把x0,y0代入化简整理可得(x0-2)b2+2y0b-x0=0,同理可得(x0-2)c2+2y0c-x0=0,进而可知b,c为方程(x0-2)x2+2y0x-x0=0的两根,根据求根公式,可求得b-c,进而可得△PRN的面积的表达式,根据均值不等式可知当当x0=4时面积最小,进而求得点P的坐标.
解答:解:(1)由抛物线C的方程为y2=2x,得其焦点F(
1
2
,0),
准线方程为x=-
1
2
,所以D(-
1
2
,0),
由题意设直线l的斜率为k(k≠0),则直线l的方程为y=kx+
k
2

联立
y=kx+
k
2
y2=2x
,得4k2x2+(4k2-8)x+k2=0.
设直线l与C交于A(x1,y1),B(x2,y2),
x1+x2=
2
k2
-1,x1x2=
1
4

由|
.
FA
|=2|
.
FB
|,得x1-2x2=
1
2

由①②解得x1=1,x2=
1
4
,k=±
2
2
3

代入△=(4k2-8)2-16k4中大于0成立,
所以k=±
2
2
3

(2)设P(x0,y0),R(0,b),N(0,c),且b>c,
故直线PR的方程为(y0-b)x-x0y+x0b=0.
由题设知,圆心(1,0)到直线PR的距离为1,
|y0-b+x0b|
(y0-b)2+x02
=1

注意到x0>2,化简上式,得(x0-2)b2+2y0b-x0=0,
同理可得(x0-2)c2+2y0c-x0=0.
由上可知,b,c为方程(x0-2)x2+2y0x-x0=0的两根,
根据求根公式,可得b-c=
4x02+4y02-8x0
x0-2
=
2x0
x0-2

故△PRN的面积为S=
1
2
(b-c)x0
=
x02
x0-2

=(x0-2)+
4
x0-2
+4≥2
(x0-2)•
4
x0-2
+4=8

等号当且仅当x0=4时成立.此时点P的坐标为(4,2
2
)或(4,-2
2
).
综上所述,当点P的坐标为(4,2
2
)或(4,-2
2
)时,△PRN的面积取最小值8.
点评:本题主要考查了抛物线的标准方程和直线与抛物线的关系,直线与圆锥曲线的问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长,中点弦问题,垂直问题,对称问题等,与圆锥曲线的性质有关的量的范围问题是常见题型,此题是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的方程为y=x2,过(0,1)点的直线l与C相交于点A,B,证明:OA⊥OB(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知抛物线C的方程为y2=2px(p>0),直线:x+y=m与x轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线与抛物线C恒有两个不同交点;
(Ⅱ)已知定点A(1,0),若直线与抛物线C的交点为Q,R,满足
AQ
AR
=0
,是否存在实数m,使得原点O到直线的距离不大于
2
4
,若存在,求出正实数p的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•合肥三模)已知抛物线C的方程为x2=2py(p>0),过抛物线上点M(-2
p
,p)作△MAB,A、B两均在抛物线上.过M作x轴的平行线,交抛物线于点N.
(I)若MN平分∠AMB,求证:直线AB的斜率为定值;
(II)若直线AB的斜率为
p
,且点N到直线MA,MB的距离的和为4p,试判断△MAB的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py(p>0),焦点F为 (0,1),点P(x1,y1)是抛物线上的任意一点,过点P作抛物线的切线交抛物线的准线l于点A(s,t).
(1)求抛物线C的标准方程;
(2)若x1∈[1,4],求s的取值范围.
(3)过点A作抛物线C的另一条切线AQ,其中Q(x2,y2)为切点,试问直线PQ是否恒过定点,若是,求出定点;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0且p为常数),过焦点F作直线与抛物线交于A(x1,y1),B(x2,y2
①求证:4x1x2=p2
②若抛物线C的准线l与x轴交于N点且AB⊥AN,求|x1-x2|

查看答案和解析>>

同步练习册答案