精英家教网 > 高中数学 > 题目详情

【题目】已知,定义:表示不小于的最小整数,例如:.

1)若,求实数的取值范围;

2)若,求时实数的取值范围;

3)设,若对于任意的,都有,求实数的取值范围.

【答案】1)(2017,2018];2; 3)(5+∞

【解析】

1)由表示不小于的最小整数,可得的范围是;(2)由指数函数的单调性,可得,则,即有,考虑,解不等式即可得到所求范围;(3)化简递增,在递减,求得的最值,可得恒成立,讨论当时,当时,由新定义和二次函数的最值求法,即可得到所求的范围.

1表示不小于的最小整数,可得的范围是

2)若,可得

即有

时,时,

显然不成立;

,可得

解得

3

递增,在递减,

可得的最小值为4

最大值为

由题意可得恒成立,

即有恒成立,

时,恒成立,

可得的最大值为

即有

时,恒成立,

可得的最大值为

即有

综上可得,的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费x(单位:万元)对年销量y(单位:吨)和年利润(单位:万元)的影响.对近6宣传费xi和年销售量yii=1,2,3,4,5,6)的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费x(万元)

38

48

58

68

78

88

年销售量y(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费x(万元)与年销售量y(吨)之间近似满足关系式yaxbab>0),即lnyblnx+lna,对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于20吨的概率.

(Ⅱ)根据所给数据,求关于的回归方程;

(Ⅲ) 若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),则2019年该公司应该投入多少宣传费才能使利润最大?(其中

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆方程;

(Ⅱ)设不过原点的直线,与该椭圆交于两点,直线的斜率分别为,满足

(i)当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由;

(ii)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的是 ( )

A. 函数上的可导函数,则为函数极值点的充要条件

B. 若命题为假命题,则命题与命题均为假命题

C. ,则的逆命题为真命题

D. 中,“”是“”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求证上是单调递减函数;

2)若对任意的,不等式恒成立,求实数的取值范围;

3)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某市201731日至16日的空气质量指数趋势图,空气质量指数小于表示空气质量优良,空气质量指数大于表示空气重度污染,某人随机选择3月1日至3月14日中的某一天到达该市.

(1)若该人到达后停留天(到达当日算1天),求此人停留期间空气质量都是重度污染的概率;

(2)若该人到达后停留3天(到达当日算1天〉,设是此人停留期间空气重度污染的天数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,过点轴的垂线交椭圆于两点,.

(1)求椭圆的标准方程;

(2)为椭圆短轴的上顶点,直线不经过点且与相交于两点,若直线与直线的斜率的和为,问:直线是否过定点?若是,求出这个定点,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-2ax-1+a,a∈R.

(1)若a=2,试求函数y=(x>0)的最小值;

(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是抛物线y2=﹣8x上一点,设P到此抛物线准线的距离是d1,到直线x+y﹣10=0的距离是d2,则dl+d2的最小值是__.

查看答案和解析>>

同步练习册答案