精英家教网 > 高中数学 > 题目详情

【题目】某小学一班级1999级同学举行20周年聚会,该班共来了12位同学,其中女同学6位,聚会过程中有一个游戏环节,在游戏环节中,需要随机从中选出2位同学代表,进行男女搭配完成该项游戏,因此,每次选出的2位同学是一男一女,才算“有效选择”;否则视为“无效选择”,继续下一次选择,直到成为“有效选择”为止.

1)求第一次随机选出的2位同学是“有效选择”的概率;

2)设第一次选出的2位同学代表中女同学人数为,求随机变量的分布列和数学期望.

【答案】1;(2)分布列见解析,1.

【解析】

1)从12个人选2人的方法数为,再求出选取一男一女的方法数可计算概率;

2)随机变量的所有可能取值分别为012,分别求出概率后得概率分布列,再由期望公式得期望.

1)设每次随机选出的2位同学是“有效选择”为事件

则由概率公式,得.

即每次随机选出的2位同学是“有效选择”的概率为.

2)易知随机变量的所有可能取值分别为012.

表示选出的2位男同学,没有女同学,则

表示选出的1位男同学,1位女同学,则

表示选出的2位女同学,没有男同学,则.

故随机变量的分布列为

0

1

2

故随机变量的数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的归家之一,某市为了制订合理的节水方案,对家庭用水情况进行了抽样调查,获得了某年100个家庭的月均用水量(单位:)的数据,将这些数据按照分成9组,制成了如图所示的频率分布直方图.

1)求图中的值,若该市有30万个家庭,试估计全市月均用水量不低于的家庭数;

2)假设同组中的每个数据都用该组区间的中点值代替,试估计全市家庭月均用水量的平均数;

3)现从月均用水量在的家庭中,先按照分层抽样的方法抽取9个家庭,再从这9家庭中抽取4个家庭,记这4个家庭中月均用水量在中的数量为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,极点为,一条封闭的曲线由四段曲线组成:.

1)求该封闭曲线所围成的图形面积;

2)若直线与曲线恰有3个公共点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)设是函数的导函数,求的单调区间;

2)证明:当时,在区间上有极大值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且点在椭圆.

1)求椭圆的标准方程;

2)过点的直线与椭圆交于两点,在直线上存在点,使三角形为正三角形,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的虚轴的一个顶点为,左顶点为,双曲线的左、右焦点分别为,点为线段上的动点,当取得最小值和最大值时,的面积分别为,若,则双曲线的离心率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过焦点做倾斜角为的120°的直线交两点,为坐标原点,

1)求抛物线的方程;

2)过抛物线焦点,且与坐标轴不垂直的直线l交抛物线于两点,在抛物线上,且,若四点都在圆上,求圆的方程.

查看答案和解析>>

同步练习册答案