精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的虚轴的一个顶点为,左顶点为,双曲线的左、右焦点分别为,点为线段上的动点,当取得最小值和最大值时,的面积分别为,若,则双曲线的离心率为( ).

A.B.C.D.

【答案】A

【解析】

设直线所在直线的方程为,设,则可得,从而可求出两向量的数量积的表达式,由二次函数的性质可求出当时,取得最小值,从而可求;当时,处取得最大值,此时,,由可求出,进而可求离心率的值.

解:由题意可知,则直线所在直线的方程为

因为点在线段上,可设,其中

设双曲线的焦距为,则

从而

因为,所以当时,取得最小值,

此时,

,即时,无最大值,所以不符合题意;

,即时,处取得最大值,此时,

因为,所以,解得,符合题意.

综上,,故双曲线的离心率

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学有教师400人,其中高中教师240人.为了了解该校教师每天课外锻炼时间,现利用分层抽样的方法从该校教师中随机抽取了100名教师进行调查,统计其每天课外锻炼时间(所有教师每天课外锻炼时间均在分钟内),将统计数据按,…,分成6组,制成频率分布直方图如下:

假设每位教师每天课外锻炼时间相互独立,并称每天锻炼时间小于20分钟为缺乏锻炼.

1)试估计本校教师中缺乏锻炼的人数;

2)若从参与调查,且每天课外锻炼时间在内的该校教师中任取2人,求至少有1名初中教师被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱中,,侧面与底面ABC所成的二面角为EF分别是棱的中点.

(Ⅰ)证明:平面

(Ⅱ)求直线与底面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学一班级1999级同学举行20周年聚会,该班共来了12位同学,其中女同学6位,聚会过程中有一个游戏环节,在游戏环节中,需要随机从中选出2位同学代表,进行男女搭配完成该项游戏,因此,每次选出的2位同学是一男一女,才算“有效选择”;否则视为“无效选择”,继续下一次选择,直到成为“有效选择”为止.

1)求第一次随机选出的2位同学是“有效选择”的概率;

2)设第一次选出的2位同学代表中女同学人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某晚会上某歌舞节目的表演者是3个女孩和4个男孩.演出结束后,7个人合影留念(3个人站在前排,4个人站在后排),其中男孩甲、乙要求站在一起,女孩丙不能站在两边,不同站法的种数为(

A.96B.240C.288D.432

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点F任作两条互相垂直的直线,分别与抛物线E交于AB两点和CD两点,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点,其焦距为,过的直线与交于两点,且的周长是.

1)求的方程;

2)若上的动点,从点(是坐标系原点)向圆作两条切线,分别交两点.已知直线的斜率存在,并分别记为.

)求证:为定值;

)试问是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),曲线C的参数方程为θ为参数).

1)当时,求直线l与曲线C的普通方程;

2)若直线l与曲线C交于AB两点,直线l倾斜角的范围为(0],且P点的直角坐标为(02),求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】发展“会员”、提供优惠,成为不少实体店在网购冲击下吸引客流的重要方式.某连锁店为了吸引会员,在2019年春节期间推出一系列优惠促销活动.抽奖返现便是针对“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”不同级别的会员享受不同的优惠的一项活动:“白金卡会员”、“金卡会员”、“银卡会员”、“基本会员”分别有4次、3次、2次、1次抽奖机会.抽奖机如图:抽奖者第一次按下抽奖键,在正四面体的顶点出现一个小球,再次按下抽奖键,小球以相等的可能移向邻近的顶点之一,再次按下抽奖键,小球又以相等的可能移向邻近的顶点之一……每一个顶点上均有一个发光器,小球在某点时,该点等可能发红光或蓝光,若出现红光则获得2个单位现金,若出现蓝光则获得3个单位现金.

1)求“银卡会员”获得奖金的分布列;

2表示第次按下抽奖键,小球出现在点处的概率.

的值;

写出关系式,并说明理由.

查看答案和解析>>

同步练习册答案