精英家教网 > 高中数学 > 题目详情

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

【答案】D

【解析】

根据图表中提供的信息,对应各选项即可判断其真假.

对于A,由图可知,2020219日,武汉市新增新冠肺炎确诊病例从218日的1660人大幅下降至615人,所以A正确;

对于B,从2020219日起至229日,武汉市新增新冠肺炎确诊病例大约在300-615之间,3月起继续减少,没有出现大幅增加,所以B正确;

对于C,由图可知,2020219日至32日,武汉市新增新冠肺炎确诊病例低于400人的有,220日,21日,23日,25日,26日,27日,31日,2日,共8天,所以C正确;

对于D2020215日到32日中,武汉市新增新冠肺炎确诊病例最多的是2161690例,最少的是32111例,1690-111=1579,所以D不正确.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】请从下面三个条件中任选一个,补充在下面的横线上,并作答.

ABBC,②FC与平面ABCD所成的角为,③∠ABC

如图,在四棱锥PABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PAAB2,,PD的中点为F

1)在线段AB上是否存在一点G,使得AF平面PCG?若存在,指出GAB上的位置并给以证明;若不存在,请说明理由;

2)若_______,求二面角FACD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学一班级1999级同学举行20周年聚会,该班共来了12位同学,其中女同学6位,聚会过程中有一个游戏环节,在游戏环节中,需要随机从中选出2位同学代表,进行男女搭配完成该项游戏,因此,每次选出的2位同学是一男一女,才算“有效选择”;否则视为“无效选择”,继续下一次选择,直到成为“有效选择”为止.

1)求第一次随机选出的2位同学是“有效选择”的概率;

2)设第一次选出的2位同学代表中女同学人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点F任作两条互相垂直的直线,分别与抛物线E交于AB两点和CD两点,则的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点,其焦距为,过的直线与交于两点,且的周长是.

1)求的方程;

2)若上的动点,从点(是坐标系原点)向圆作两条切线,分别交两点.已知直线的斜率存在,并分别记为.

)求证:为定值;

)试问是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数在点处的切线是否过定点?若过,求出该点的坐标;若不过,请说明理由.

2)若有最大值,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),曲线C的参数方程为θ为参数).

1)当时,求直线l与曲线C的普通方程;

2)若直线l与曲线C交于AB两点,直线l倾斜角的范围为(0],且P点的直角坐标为(02),求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为F,直线lC交于MN两点.

1)若l过点F,点MN到直线y2的距离分别为d1d2,且,求l的方程;

2)若点M的坐标为(01),直线m过点MC于另一点N′,当直线lm的斜率之和为2时,证明:直线NN′过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是2020215日至32日武汉市新增新冠肺炎确诊病例的折线统计图.则下列说法不正确的是(

A.2020219日武汉市新增新冠肺炎确诊病例大幅下降至三位数

B.武汉市在新冠肺炎疫情防控中取得了阶段性的成果,但防控要求不能降低

C.2020219日至32日武汉市新增新冠肺炎确诊病例低于400人的有8

D.2020215日到32日武汉市新增新冠肺炎确诊病例最多的一天比最少的一天多1549

查看答案和解析>>

同步练习册答案