精英家教网 > 高中数学 > 题目详情
设a∈R,f(x)=
a•2x+a-2
2x+1
是奇函数,
(1)求a的值;
(2)如果g(n)=
n
n+1
(n∈N+),试比较f(n)与g(n)的大小(n∈N+).
考点:不等式比较大小,函数奇偶性的性质
专题:归纳法,函数的性质及应用
分析:(1)利用奇函数的定义即可得出;
(2)利用作差法和数学归纳法即可得出.
解答: 解:∵(1)f(x)是定义在R上的奇函数,∴f(0)=0,2a-2=0,解得a=1.
经验证a=1,f(x)是奇函数,∴a=1.
(2)由(1)可知:f(x)=
2x-1
2x+1
,∴f(n)=
2n-1
2n+1

∴f(n)-g(n)=
2n-1
2n+1
-
n
n+1
=
2n-2n-1
(2n+1)(n+1)

只要比较2n与2n+1的大小即可.
当n=1,2时,f(n)<g(n);当n≥3时,2n>2n+1,f(n)>g(n).
下面证明,n≥3时,2n>2n+1,即f(x)>g(x).
①n=3时,23>2×3+1,显然成立,
②假设n=k(k≥3,k∈N+)时,2k>2k+1,
那么n=k+1时,2k+1=2×2k>2(2k+1).
2(2k+1)-[2(k+1)+1]=4k+2-2k-3=2k-1>0(∵k≥3),
有2k+1>2(k+1)+1.
∴n=k+1时,不等式也成立,由①②可以断定,n≥3,n∈N+时,2n>2n+1.
结论:n=1,2时,f(n)<g(n);当n≥3,n∈N+时,f(n)>g(n).
点评:熟练掌握奇函数的定义、作差法和数学归纳法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题
(1)(矩阵与变换选做题)已知矩阵M=
10
02
,曲线y=sinx在矩阵MN对应的变换作用下得到曲线C,则C的方程是
 

(2)(极坐标与参数方程选做题)在极坐标系中,点(2,
π
2
)到直线ρsin(θ+
π
4
)+
2
=0
的距离是
 

(3)(不等式选讲选做题)若关于x的不等式|x-1|-|x+2|≥a的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
sin4α
4sin2(
π
4
+α)tan(
π
4
-α)
=(  )
A、sin2αB、cos2α
C、sinαD、cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-1.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)求函数f(x)在[
π
4
2
]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知fn(x)=(1+2
x
n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2项的系数;
(2)若pn是fn(x)展开式中所有无理项的二项式系数和,数列{an}是各项都大于1的数组成的数列,试用数学归纳法证明:
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆O:x2+y2=25,圆O1的圆心为O1(m,0)且与圆O交于点P(3,4),过点P且斜率为(k≠0)的直线l分别交圆O,O1于点A,B.
(1)若k=1,且BP=7
2
,求圆O1的方程;
(2)过点P作垂直于直线l的直线l1分别交圆O,O1于点C,D.当m为常数时,试判断AB2+CD2是否是定值?若是定值,求出这个值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的一元二次不等式kx2+2x-1<0的解集是R,则k的取值范围是          (  )
A、k<-1B、k<0
C、-1<k<0D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在[-6,6]上的偶函数,且f(4)>f(2),则下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(3)>f(2)
C、f(2)<f(-4)
D、f(-5)>f(-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

把点A(2,1)按向量
a
=(-2,3)平移到B,若
OB
=-2
BC
,则C点坐标为
 

查看答案和解析>>

同步练习册答案