精英家教网 > 高中数学 > 题目详情
1.在极坐标系中,点($\sqrt{2}$,$\frac{π}{4}$)到直线ρsin(θ-$\frac{π}{3}$)=-$\frac{{\sqrt{3}}}{2}$的距离是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,可得点到直线的距离.

解答 解:点($\sqrt{2}$,$\frac{π}{4}$)的直角坐标为(1,1),
直线ρsin(θ-$\frac{π}{3}$)=-$\frac{{\sqrt{3}}}{2}$的普通坐标方程为:$\frac{1}{2}$y-$\frac{\sqrt{3}}{2}$x=-$\frac{\sqrt{3}}{2}$,即3x-$\sqrt{3}$y-3=0,
故点到直线的距离为d=$\frac{|3-\sqrt{3}-3|}{\sqrt{{3}^{2}+{\sqrt{3}}^{2}}}$=$\frac{1}{2}$,
故选:B

点评 本题主要考查把点的极坐标化为直角坐标,求点到直线的距离,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+3x+2,\;x≥0}\\{{x^2}-3x+2,\;x<0}\end{array}}$,则不等式f(2x-1)>f(1)的解集为(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=ln(x+1).
(Ⅰ)求满足f(1-2x)>f(x)的x的取值集合A;
(Ⅱ)设集合B={x|a-1<x<2a2},若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲乙两位同学同住一小区,甲乙俩同学都在7:00~7:20经过小区门口.由于天气下雨,他们希望在小区门口碰面结伴去学校,并且前一天约定先到者必须等候另一人5分钟,过时即可离开.则他俩在小区门口碰面结伴去学校的概率是(  )
A.$\frac{5}{9}$B.$\frac{6}{11}$C.$\frac{8}{15}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,抛物线y2=4x的焦点到其准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+3x2-5(x∈R)的图象为曲线C.
(Ⅰ)当x∈[-2,1]时,求过曲线C上任意一点切线斜率的取值范围;
(Ⅱ)求垂直于直线l:$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{3\sqrt{10}}{10}t}\\{y=\frac{1}{3}+\frac{\sqrt{10}}{10}t}\end{array}\right.$(t为参数)并且与曲线C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=ax-sinx在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上有且仅有一个零点,则a的取值范围是(  )
A.a≥1B.a≥1或a≤$\frac{2}{π}$C.a>1或a≤0D.a$<\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.由曲线y=ex,y=e-x以及x=1所围成的图形的面积等于e+$\frac{1}{e}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:$\left\{\begin{array}{l}{x=5+\sqrt{3}t}\\{y=\sqrt{3}+t}\end{array}\right.$(t为参数),曲线C的坐标方程为ρ=6cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)若点M(5,$\sqrt{3}$),直线l与曲线C的交点为A,B,求①|MA|•|MB|;②|MA|+|MB|的值;③|AB|的值;④||MA|-|MB||的值;
(3)若点M(8,2$\sqrt{3}$),直线l与曲线C的交点为A,B,求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的值.

查看答案和解析>>

同步练习册答案