精英家教网 > 高中数学 > 题目详情
1.在△ABC中,已知a=4cm,B=60°,A=45°,则b=2$\sqrt{6}$.

分析 利用正弦定理即可得出.

解答 解:由正弦定理可得:$\frac{4}{sin4{5}^{°}}=\frac{b}{sin6{0}^{°}}$,
∴b=$\frac{4×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{6}$.
故答案为:$2\sqrt{6}$.

点评 本题考查了正弦定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,则$\frac{{b}_{4}-{b}_{3}}{{a}_{2}-{a}_{1}}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx,g(x)=ax-$\frac{1}{x}$-a+1.
(1)求函数f(x)的单调区间;
(2)若当x>1时,函数y=g(x)的图象恒在函数y=$\frac{{({a+1})f(x)}}{x}$的图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{a(x-1)}{x}$(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:?x∈(1,2),不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,等腰三角形ABC,AB=AC=2,∠BAC=120°.E,F分别为边AB,AC上的动点,且满足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分别是EF,BC的中点,则|MN|的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα=$\frac{3}{5}$,cos(α+β)=$\frac{8}{17}$,α,β均为锐角,则cosβ=$\frac{84}{85}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用0,1,2,3,4组成的各位数字不重复的所有的四位数的和是259980.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设PH⊥平面ABC,且PA,PB,PC相等,则H是△ABC的(  )
A.内心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对于函数f(x),若定义域内存在实数x满足f(-x)=-f(x),则称f(x)为“限制奇函数”,
(1)试判断f(x)=x2+2x-4是否为“限制奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,2]上的“限制奇函数”,求实数m的取值范围;
(3)设f(x)=4x-m•2x+1+m2-3是定义在R上的“限制奇函数”,求实数m的取值范围.

查看答案和解析>>

同步练习册答案