精英家教网 > 高中数学 > 题目详情
5.如图给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一个程序框图,则判断框内应填入的条件是(  )
A.i≤1009B.i>1009C.i≤1010D.i>1010

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值.

解答 解:程序运行过程中,各变量值如下表所示:
第一次循环:S=0+1,i=1,
第二次循环:S=1+$\frac{1}{3}$,i=2,
第三次循环:S=1+$\frac{1}{3}$+$\frac{1}{5}$,i=3,…
依此类推,第1009次循环:S=1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$,i=1010,此时不满足条件,退出循环
其中判断框内应填入的条件是:i≤1009,
故选:A.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前2016项之和S2016=(  )
A.22016B.22015-1C.22016-1D.22017-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数既是奇函数,又在[-1,1]上单调递增是(  )
A.f(x)=|sinx|B.f(x)=ln$\frac{2-x}{2+x}$C.f(x)=$\frac{1}{2}$(ex-e-xD.f(x)=ln($\sqrt{{x}^{2}+1}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|xex|-m(m∈R)有三个零点,则m的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=(1-i)2+$\frac{2}{1+i}$(i为虚数单位)在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.抛物线C1:x2=2py(p>0)的焦点与双曲线C2:$\frac{{x}^{2}}{3}{-y}^{2}=1$的右焦点的连线在第一象限内与C1交于点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(  )
A.$\frac{\sqrt{3}}{16}$B.$\frac{\sqrt{3}}{8}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2x+alnx(a>0).
(Ⅰ)当a=2时,试求函数图线过点(1,f(1))的切线方程;
(Ⅱ)当a=1时,若关于x的方程f(x)=x+b有唯一实数解,试求实数b的取值范围;
(Ⅲ)若函数f(x)有两个极值点x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是$50(5x-\frac{3}{x}+1)$元.
(1)要使生产该产品2小时获得的利润不低于1500元,求x的取值范围;
(2)要使生产480千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在各项均为正数的等比数列{an}中,若log2(a2•a3•a5•a7•a8)=5,则a1•a9=(  )
A.4B.5C.2D.25

查看答案和解析>>

同步练习册答案