精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.求实数m的最大值.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(Ⅰ)求函数f(x)的导数f′(x),计算f(x)在点P(0,f(0))处的切线斜率k,由切线方程为y=3x-2,得k=f′(0)=a的值与b的值;
(Ⅱ)由g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数,可得g′(x)=x2-2x+3-
m
(x-1)2
≥0在[2,+∞)上恒成立,分离参数m≤(x-1)4+2(x-1)2,求出右边的最小值,即可求实数m的最大值.
解答: 解:(Ⅰ)∵函数f(x)=
1
3
x3-x2+ax+b,
∴f′(x)=x2-2x+a;
又函数f(x)在点P(0,f(0))处的切线斜率k=f′(0)=a,切线方程为y=3x-2;
∴f′(0)=3,f(0)=-2,即a=3,b=-2;
(Ⅱ)∵g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数,
∴g′(x)=x2-2x+3-
m
(x-1)2
≥0在[2,+∞)上恒成立,
∴m≤(x-1)4+2(x-1)2
令h(x)=(x-1)4+2(x-1)2,则h′(x)=4(x-1)3+4(x-1)≥0
∴h(x)在[2,+∞)上单调递增,
∴h(x)min=h(2)=3,
∴m≤3,
∴实数m的最大值为3.
点评:本题考查了利用导数求函数图象上过某点切线方程的斜率,根据切线方程求函数解析式的系数问题,考查恒成立问题,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正六边形ABCDEF中,
BA
+
CD
+
EF
=(  )
A、
 0 
B、
BE
C、
AD
D、
CF

查看答案和解析>>

科目:高中数学 来源: 题型:

对具有线性相关关系的变量x和y,由测得的一组数据已求得回归直线的斜率为6.5,且恒过(2,3)点,则这条回归直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R.
(1)若a=2,求函数f(x)的极小值;
(2)讨论函数f(x)的单调性;
(3)若方程f(x)=0在区间[
2
,e]上有且只有一个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tan(π+α)=2,计算:
(1)
sinα+2cosα
sinα-cosα

(2)sin2α+sinαcosα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x+4y-4=0,一条斜率等于1的直线l与圆C交于A,B两点.
(1)求弦AB最长时直线l的方程;
(2)求△ABC面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn,b1=
2
3
且3Sn=Sn-1+2(n≥2,n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和,Tn<m对n∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

先用求根公式求出方程2x2-3x-1=0的解,然后再借助计算器或计算机,用二分法求出这个方程的近似解(精确度0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
x
(e为自然对数的底)
(1)试确定函数f(x)的单调区间;
(2)求函数f(x)在[
1
2
3
2
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案