精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-2x+4y-4=0,一条斜率等于1的直线l与圆C交于A,B两点.
(1)求弦AB最长时直线l的方程;
(2)求△ABC面积最大时直线l的方程.
考点:直线与圆的位置关系
专题:直线与圆
分析:(1)欲求弦AB最长时直线L的方程,依据圆的特征:圆的直径是最长的弦,只须求出l过圆心时的方程即可;
(2)欲求△ABC面积最大时直线L的方程,因其两腰定长,故只须顶角为直角时面积最大,最后利用点到直线的距离公式求解即可;
解答: 解:(1)∵L过圆心时弦长AB最大,圆心坐标为(1,-2),∴L的方程为x-y-3=0(4分)
(2)△ABC的面积S=
1
2
CA•CBsin∠ACB=
9
2
sin∠ACB,
当∠ACB=
π
2
时,△ABC的面积S最大,
此时△ABC为等腰三角形;
设L方程为y=x+m,则圆心到直线距离为
3
2
2

从而有
|1+2+m|
2
=
3
2
2

m=0或m=-6,
则L方程为x-y=0或x-y-6=0(8分).
点评:本小题主要考查直线的一般式方程、直线和圆的方程的应用、点到直线的距离公式等基础知识,考查运算求解能力,考查数形结合思想、函数与方程思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题中,正确的是(  )
A、若三条直线两两平行,则这三条直线必共面
B、互不平行的两条直线是异面直线
C、分别位于两个不同平面内的两条直线是异面直线
D、不同在任何一个平面内的两条直线是异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M是AB的中点.
(1)求证:CM⊥平面FDM;
(2)求直线DM与平面ABEF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高二(6)班学生每周用于数学学习的时间x(单位:小时)与数学成绩y(单位:分)构成如下数据(15,79),(23,97),(16,64),(24,92),(12,58).求得的回归直线方程为
y
=2.5x+
a
,则某同学每周学习20小时,估计数学成绩约为多少分?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.
(Ⅰ)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+
m
x-1
是[2,+∞)上的增函数.求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=-
12
13
,且α为第三象限角,求cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:4n+3×4n-1+32×4n-2+…+3n-1×4+3n

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,四边形ABCD为平行四边形,面PAD⊥平面ABCD,PA=PD,Q为AD的中点,且QB⊥AD.
(Ⅰ)求证:PB⊥BC;
(Ⅱ)若点M在PC上,且
PM
MC
=
1
2
,求三棱锥C-MQB与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2b|x|+6,x∈[-1,a],且a>-1,
(1)若a=0,b=3,求函数f(x)的值域;
(2)若b=3,且函数y=f(x)-11有三个不同的零点,求实数a的取值范围.
(3)若b是常数且|b|>1,设函数y=f(x)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

同步练习册答案