精英家教网 > 高中数学 > 题目详情
化简:4n+3×4n-1+32×4n-2+…+3n-1×4+3n
考点:数列的求和
专题:等差数列与等比数列
分析:利用错位相减法求解.
解答: 解:设Sn=4n+3×4n-1+32×4n-2+…+3n-1×4+3n
4
3
Sn=
4n+1
3
+4n+3×4n-1+32×4n-2
+…+3n-2×42+3n-1×4,
两式相减,得
1
3
Sn
=
1
3
×4n+1-3n

Sn=4n+1-3n+1
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义于R上的奇函数,当x≥0时,f(x)=|x-a|-a(a>0),且对任意x∈R,恒有f(x+1)≥f(x),则实数a的取值范围是(  )
A、(0,4]
B、(0,2]
C、(0,
1
2
]
D、(0,
1
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R.
(1)若a=2,求函数f(x)的极小值;
(2)讨论函数f(x)的单调性;
(3)若方程f(x)=0在区间[
2
,e]上有且只有一个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2x+4y-4=0,一条斜率等于1的直线l与圆C交于A,B两点.
(1)求弦AB最长时直线l的方程;
(2)求△ABC面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn,b1=
2
3
且3Sn=Sn-1+2(n≥2,n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和,Tn<m对n∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(Ⅰ)sin155°cos325°+cos205°sin215°         
(Ⅱ)
1+tan15°
1-tan15°

查看答案和解析>>

科目:高中数学 来源: 题型:

先用求根公式求出方程2x2-3x-1=0的解,然后再借助计算器或计算机,用二分法求出这个方程的近似解(精确度0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知sin
α
2
-cos
α
2
=
1
5
,求sinα的值;
(2)已知α,β都是锐角,tanα=
1
7
,tanβ=
1
3
,求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
12
cd
(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为
2
1
1
1
,求矩阵A的逆矩阵A-1

查看答案和解析>>

同步练习册答案