精英家教网 > 高中数学 > 题目详情
11.f(x)=sin2x-sinxcosx图象中,与原点距离最小的对称轴方程是x=$\frac{π}{8}$.

分析 利用倍角公式降幂,再用两角和的正弦化积,由相位的终边落在y轴上求得x值得答案.

解答 解:f(x)=sin2x-sinxcosx=$\frac{1-cos2x}{2}-\frac{1}{2}sin2x$
=$-\frac{\sqrt{2}}{2}sin(2x+\frac{π}{4})+\frac{1}{2}$.
由$2x+\frac{π}{4}=\frac{π}{2}+kπ$,得x=$\frac{π}{8}+\frac{kπ}{2},k∈Z$.
取k=0,得x=$\frac{π}{8}$.
∴与原点距离最小的对称轴方程是x=$\frac{π}{8}$.
故答案为:x=$\frac{π}{8}$.

点评 本题考查三角函数的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若f(x)=-$\frac{1}{2}{x^2}$+blnx在(0,2)上是增函数,则b的取值范围是(  )
A.[4,+∞)B.(4,+∞)C.(-∞,4]D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(x+2)(x-1)4=a0+a1(x+1)+…+a5(x+1)5,则a1+a3+a5=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设sin1000°=k,则tan1000°=(  )
A.$\frac{\sqrt{1-{k}^{2}}}{k}$B.-$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平面上单位向量$\overrightarrow{a}$=($\frac{5}{13}$,$\frac{12}{13}$),$\overrightarrow{b}$=($\frac{4}{5}$,$\frac{3}{5}$),则下列关系式正确的是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$)C.($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)={log_4}{x^2}•{log_2}({16^a}•{x^3})$
(1)若a=1,求方程f(x)=-1的解集.
(2)当x∈[2,4]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在圆锥SO中,AB为底面圆O的直径,点C为弧$\widehat{AB}$的中点,SO=AB;
(1)证明:AB⊥平面SOC;
(2)若点D为母线SC的中点,求AD与平面SOC所成角;(结果用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若coa($\frac{π}{2}$-α)=$\frac{1}{3}$,则cos(π-2α)=(  )
A.-$\frac{4\sqrt{2}}{9}$B.$\frac{4\sqrt{2}}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$$\sqrt{2}$C.$\frac{2\sqrt{5}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案