精英家教网 > 高中数学 > 题目详情
6.已知平面上单位向量$\overrightarrow{a}$=($\frac{5}{13}$,$\frac{12}{13}$),$\overrightarrow{b}$=($\frac{4}{5}$,$\frac{3}{5}$),则下列关系式正确的是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$)C.($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)

分析 根据平面向量的坐标运算与数量积运算,对选项中的结论分析、判断即可.

解答 解:∵单位向量$\overrightarrow{a}$=($\frac{5}{13}$,$\frac{12}{13}$),$\overrightarrow{b}$=($\frac{4}{5}$,$\frac{3}{5}$),
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-${\overrightarrow{b}}^{2}$=12-12=0,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),B正确.
故选:B.

点评 本题考查了平面向量的坐标运算与数量积运算的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知f′(x)是函数f(x)的导函数,f(x)的图象如图所示,则不等式f(x)•f′(x)>0的解集为(  )
A.(0,2)B.(-∞,0)∪(2,3)C.(-∞,0)∪(3,+∞)D.(0,2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对边的边长分别为a,b,c,已知atanA-ccosB=bcosC.
(Ⅰ)求角A的大小;
(Ⅱ)设AD是BC边上的高,若$AD=\frac{1}{2}a$,求$\frac{b}{c}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sin($\frac{π}{6}$+α)=-$\frac{1}{3}$,且$\frac{5π}{6}$<α<$\frac{4π}{3}$,求tan($\frac{5π}{3}$+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.f(x)=sin2x-sinxcosx图象中,与原点距离最小的对称轴方程是x=$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设△ABC的内角A、B、C所对的边分别为a、b、c,已知$a=1,b=2,cosC=\frac{1}{4}$.
(1)求△ABC的周长和面积;
(2)求cos(A+C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,A>B,有下列五个不等式:
(1)sinA>sinB(2)cosA<cosB(3)tanA>tanB(4)cos2A<cos2B(5)sin2A+sin2C>sin2B
则其中一定成立的不等式的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,已知a4=4,a8=12,则该数列前11项和S11=(  )
A.58B.88C.143D.176

查看答案和解析>>

同步练习册答案