精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{{{2^x}-1}}{{{2^x}+1}}$,g(x)=x2+2mx+$\frac{5}{3}$
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a-a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[-1,1],都存在一个实数x2∈[-1,1],使得f(x1)=g(x2),求实数m的取值范围.

分析 (1)设x1、x2是R上任意两个值,且x1<x2,求得∴f(x1)-f(x2)<0,可得f(x)在R上是增函数.
(2)先证明f(x)为奇函数,不等式即f(3)>-f(2a-a2)=f(a2-2a),再利用f(x)在R上是增函数 可得a2-2a<3,由此求得a的范围.
(3)利用f(x)的单调性求得A,设g(x)在[-1,1]上的值域为B,则由题意可知A⊆B,分类讨论求得B,从而求得实数m的取值范围.

解答 解:(1)证明:f(x)的定义域为R,设x1、x2是R上任意两个值,且x1<x2,则$f({x_1})-f({x_2})=1-\frac{2}{{{2^{x_1}}+1}}-(1-\frac{2}{{{2^{x_2}}+1}})=\frac{{2({2^{x_1}}-{2^{x_2}})}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$,
∵x1<x2,∴${2^{x_1}}>0$,${2^{x_2}}>0$,${2^{x_1}}<{2^{x_2}}$,∴f(x1)-f(x2)<0,
∴f(x)在R上是增函数.
(2)∵$f(-x)=\frac{{{2^{-x}}-1}}{{{2^{-x}}+1}}=\frac{{\frac{1}{2^x}-1}}{{\frac{1}{2^x}+1}}=\frac{{1-{2^x}}}{{1+{2^x}}}=-f(x)$,∴f(x)在R上是奇函数,
∵f(2a-a2)+f(3)>0,∴f(3)>-f(2a-a2)=f(a2-2a),
又∵f(x)在R上是增函数,∴a2-2a<3,
解得-1<a<3,∴所求实数a构成的集合为 {a|-1<a<3}.
(3)∵f(x)在R上是增函数,∴当x1∈[-1,1]时,f(x1)∈[f(-1),f(1)],即$f({x_1})∈[-\frac{1}{3},\frac{1}{3}]=A$.
设g(x)在[-1,1]上的值域为B,则由题意可知A⊆B.
∵$g(x)={(x+m)^2}+\frac{5}{3}-{m^2}$,∴$\frac{5}{3}-{m^2}≤-\frac{1}{3}$,解得 $m≤-\sqrt{2}$或$m≥\sqrt{2}$,
①当$m≤-\sqrt{2}$时,函数g(x)在[-1,1]上为减函数,所以$B=[g(1),g(-1)]=[\frac{8}{3}+2m,\frac{8}{3}-2m]$;
由A⊆B得 $\left\{\begin{array}{l}\frac{8}{3}+2m≤-\frac{1}{3}\\ \frac{8}{3}-2m≥\frac{1}{3}\\ m≤-\sqrt{2}\end{array}\right.$,解得 $m≤-\frac{3}{2}$.
②当$m≥\sqrt{2}$时,函数g(x)在[-1,1]上为增函数,所以$B=[g(-1),g(1)]=[\frac{8}{3}-2m,\frac{8}{3}+2m]$,
由A⊆B得 $\left\{\begin{array}{l}\frac{8}{3}-2m≤-\frac{1}{3}\\ \frac{8}{3}+2m≥\frac{1}{3}\\ m≥\sqrt{2}\end{array}\right.$,解得$m≥\frac{3}{2}$.
综上可知,实数m的取值范围为$m≤-\frac{3}{2}$或$m≥\frac{3}{2}$.

点评 本题主要考查函数的单调性、奇偶性的应用,集合间的包含关系,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知A={x|x<3},B={x|x<a}.
(1)若B⊆A,求a的取值范围;
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{1+2i}{3-4i}$的虚部为(  )
A.$-\frac{1}{5}$B.$-\frac{i}{5}$C.$\frac{2i}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).
(Ⅰ)求抛物线的标准方程;
(Ⅱ)直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为直角时,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将二进制数11010(2)化为八进制数为32(8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{2^x},}&{x≤0}\end{array}}\right.$,则f(f(9))=$\frac{1}{4}$,若f(a)>$\frac{1}{2}$,则实数a的取值范围是(-1,$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若4位男生、2位女生站成一排,则2位女生不站在两端的种数是288.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列求导运算正确的是(  )
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(3x)′=3xlog3e
C.(log23x)′=$\frac{1}{xln2}$D.(x2cos x)′=-2xsin x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知角 α的终边经过点P(4,-3),则cosα的值为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案