精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥P-ABCD的底面为直角梯形,ADBC,∠BCD=90°,PA=PB,PC=PD
(1)证明平面PAB⊥平面ABCD;
(2)如果AD=1,BC=3,CD=4,且侧面PCD的面积为8,求四棱锥P-ABCD的体积.
精英家教网

精英家教网
证明:(1)取AB、CD 的中点E、F.连结PE、EF、PF,
由PA=PB、PC=PD
得PE⊥AB,PF⊥CD
∴EF为直角梯形的中位线,∠BCD=90°,
∴EF⊥CD
又PF∩EF=F
∴CD⊥平面PEF
又∵PF?平面PEF,得CD⊥PE
又PE⊥AB且梯形两腰AB、CD必相交
∴PE⊥平面ABCD
又由PE?平面PAB
∴平面PAB⊥平面ABCD
(2)∵侧面PCD的面积S=
1
2
•CD•PF=8且CD=4,
∴PF=4
又∵AD=1,BC=3,EF为直角梯形的中位线,
∴EF=
1
2
(AD+BC)=2
又由PE⊥平面ABCD,故PE=2
3

∴四棱锥P-ABCD的体积V=
1
3
•SABCD•PE=
16
3
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案