精英家教网 > 高中数学 > 题目详情
已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)解不等式f(t2-2t)+f(2t2-1)<0.
分析:(1)利用待定系数法求指数函数的解析式.(2)利用函数f(x)是奇函数,得到f(0)=0,然后建立方程求解m,n即可.
(3)利用指数函数的单调性以及函数f(x)的奇偶性,将不等式进行转化,解不等式即可.
解答:解:(1)设y=g(x)=ax
∵g(2)=4,∴a2=4,解得a=2,
∴g(x)=2x
(2)由(1)知:f(x)=
-2x+n
2x+1+m

∵f(x)是奇函数,
∴f(0)=0,
m-1
2+m
=0
,解得m=1.
∴f(x)=
1-2x
2x+1+m

又由f(1)=-f(-1)知
1-2
4+m
=-
1-
1
2
m+1

解得m=2.
(3)由(2)知f(x)=
1-2x
2+2x+1
=-
1
2
+
1
2x+1

∵2x为增函数,
∴2x+1为增函数,
1
2x+1
为减函数,
∴f(x)在(-∞,+∞)为减函数.
又∵(x)是奇函数,
从而不等式:f(t2-2t)+f(2t2-1)<0等价于,
f(t2-2t)<-f(2t2-1)=f(1-2t2
∵f(x)为减函数,由上式推得:t2-2t>1-2t2
∴3t2-2t-1>0,
解得t>1或t<-
1
3

∴不等式的解集为(-∞,-
1
3
)∪(1,+∞).
点评:本题主要考查函数奇偶性的应用,以及指数函数性质的综合应用,考查学生的运算和推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R,函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈[1,3],不等式f(t2-2t)+f(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)过点(1,3),函数f(x)=
-g(x)+ng(x)+1
是R上的奇函数.
(I)求y=g(x)的解析式;
(II)求n的值并用定义域判定y=f(x)的单调性;
(III)讨论关于x的方程xf(x)=m的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R上的函数f(x)=
-g(x)+ng(x)+m
是奇函数.
(Ⅰ)求y=g(x)与y=f(x)的解析式;
(Ⅱ)判断y=f(x)在R上的单调性并用单调性定义证明;
(Ⅲ)若方程f(x)=b在(-∞,0)上有解,试证:-1<3f(b)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=
n-g(x)m+2g(x)
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案