精英家教网 > 高中数学 > 题目详情
6.已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1,F2它们的公共焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,则椭圆C1的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

分析 设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0),由题意可得a2-b2=m2+n2=c2,运用椭圆和双曲线的定义,以及离心率公式,结合条件,化简整理,可得a=3m,c=$\sqrt{3}$m,由离心率公式可得.

解答 解:设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
双曲线C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m,n>0),
由题意可得a2-b2=m2+n2=c2
e1=$\frac{c}{a}$,e2=$\frac{c}{m}$,由e1e2=1,可得am=c2
设PF1=s,PF2=t,由余弦定理可得,
4c2=s2+t2-2st•$\frac{1}{2}$=s2+t2-st,
由椭圆的定义可得s+t=2a,
由双曲线的定义可得,s-t=2m,
可得s=a+m,t=a-m,
即有4c2=(a+m)2+(a-m)2-(a+m)(a-m),
即为4am=a2+3m2
解得a=m(舍去)或a=3m,
c=$\sqrt{3}$m,
则e1=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$.
故选:D.

点评 本题考查椭圆和双曲线的定义、方程和性质,注意运用定义法和离心率公式是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知θ是第二象限的角,且cos(78°-θ)=$\frac{5}{13}$,则sin(102°+θ)=$-\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过椭圆的右焦点且斜率为1的直线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,若椭圆离心率为$\frac{1}{2}$,短轴长为2$\sqrt{3}$.
(1)求椭圆方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x、y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$则z=4x+y的最大值为(  )
A.-8B.10C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|1<x<2},B={x|x≤a},若A⊆B,则a的取值范围是(  )
A.a≥2B.a>2C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=3cos($\frac{π}{4}$-ωx)(ω>0),函数f(x)相邻两个零点之间的绝对值为$\frac{π}{2}$,则下列为函数f(x)的单调递减区间的是(  )
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{8}$,$\frac{5π}{8}$]D.[$\frac{5π}{8}$,$\frac{9π}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图为某几何体的三视图,则该几何体的体积等于(  )
A.$4+\frac{2π}{3}$B.$8+\frac{2π}{3}$C.$4+\frac{4π}{3}$D.$6+\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数$\frac{1-2i}{2+i}$对应的点的坐标为(  )
A.($\frac{4}{5}$,$\frac{3}{5}$)B.($\frac{4}{5}$,-$\frac{3}{5}$)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算由直线y=0和曲线y=x2-6x+5围成的平面图形的面积.

查看答案和解析>>

同步练习册答案