精英家教网 > 高中数学 > 题目详情
10.已知θ是第二象限的角,且cos(78°-θ)=$\frac{5}{13}$,则sin(102°+θ)=$-\frac{12}{13}$.

分析 利用已知角的范围,求出78°-θ的范围,再由同角三角函数的基本关系式求出sin(78°-θ),最后由诱导公式得答案.

解答 解:∵θ是第二象限的角,∴90°+k•360°<θ<180°+k•360°,k∈Z,
则-180°-k•360°<-θ<-90°-k•360°,
∴-102°-k•360°<78°-θ<-12°-k•360°,k∈Z.
又cos(78°-θ)=$\frac{5}{13}$,∴sin(78°-θ)=-$\sqrt{1-(\frac{5}{13})^{2}}=-\frac{12}{13}$,
则sin(102°+θ)=sin(78°-θ)=$-\frac{12}{13}$.
故答案为:$-\frac{12}{13}$.

点评 本题考查利用诱导公式化简求值,训练了同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知正项数列{an}的前n项和Sn满足:4Sn=(an-1)(an+3),(n∈N*
(1)求an
(2)若bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=$\frac{{x}^{2}-4x+7}{x-3}$.
①若x>3,求此函数的最小值;
②若x<3,求此函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知θ为锐角,ln(1+sinθ)=a,ln($\frac{1}{1-sinθ}$)=b,则lncosθ的值为$\frac{a-b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数的值域:y=2sin($\frac{x}{2}$-$\frac{π}{6}$)+1,x∈[-π,π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,1),且离心率e=$\frac{\sqrt{2}}{2}$
(1)求椭圆的标准方程
(2)若直线y=$\sqrt{2}$(x-1)与椭圆交于A,B两点,证明$\overrightarrow{OA}$•$\overrightarrow{OB}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=sin(ωx+φ)(x∈R)$(ω>0,|φ|<\frac{π}{2})$的部分图象如图所示,如果${x_1},{x_2}∈(\frac{π}{6},\frac{2π}{3})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1,F2它们的公共焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,则椭圆C1的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案