| A. | -8 | B. | 10 | C. | 12 | D. | 15 |
分析 利用线性规划的内容作出不等式组对应的平面区域,然后由z=4x+y得y=-4x+z,根据平移直线确定目标函数的最大值.
解答
解:作出不等式组对应的平面区域如图:
由z=4x+y得y=-4x+z,平移直线y=-4x+z,由图象可知当直线经过点A时,直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x=4}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$,即A(4,-1),代入z=4x+y得最大值为z=16-1=15.
故选:D.
点评 本题主要考查二元一次不等式组表示平面区域的知识,以及线性规划的基本应用,利用数形结合是解决此类问题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [5,+∞) | B. | [2,+∞) | C. | [1,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3{n^2}}}{8}$-$\frac{1}{4}$ | B. | $\frac{{3{n^2}}}{8}$+$\frac{1}{4}$ | C. | $\frac{{3{n^2}}}{4}$ | D. | $\frac{{3{n^2}}}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com