精英家教网 > 高中数学 > 题目详情
14.若变量x、y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$则z=4x+y的最大值为(  )
A.-8B.10C.12D.15

分析 利用线性规划的内容作出不等式组对应的平面区域,然后由z=4x+y得y=-4x+z,根据平移直线确定目标函数的最大值.

解答 解:作出不等式组对应的平面区域如图:
由z=4x+y得y=-4x+z,平移直线y=-4x+z,由图象可知当直线经过点A时,直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x=4}\\{x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$,即A(4,-1),代入z=4x+y得最大值为z=16-1=15.
故选:D.

点评 本题主要考查二元一次不等式组表示平面区域的知识,以及线性规划的基本应用,利用数形结合是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知θ为锐角,ln(1+sinθ)=a,ln($\frac{1}{1-sinθ}$)=b,则lncosθ的值为$\frac{a-b}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某人1-5月收到的快件数分别为1,3,2,2,2,则这5个数的方差s2=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$和椭圆C2:$\frac{{x}^{2}}{2}+{y}^{2}$=1的离心率相同,且点($\sqrt{2}$,1)在椭圆C1上.
(1)求椭圆C1的方程;
(2)设P为椭圆C2上一动点,过点P作直线交椭圆C1于A、C两点,且P恰为弦AC的中点.试判断△AOC的面积是否为定值?若是,求出此定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的中心在原点,焦点F1,F2在x轴上,离心率e=$\frac{1}{2}$,且经过点M(1,$\frac{3}{2}$).
(1)求椭圆C的方程;
(2)若直线l经过椭圆C的右焦点F2,且与椭圆C交于A,B两点,使得$\overrightarrow{{F_1}A}•\overrightarrow{{F_1}B}$=1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1,F2它们的公共焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,则椭圆C1的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\left\{\begin{array}{l}x-y+1≥0\\ 7x-y-7≤0\\ x≥0,y≥0\end{array}\right.$表示的平面区域为D,若?(x,y)∈D,2x+y≤a为真命题,则实数a的取值范围是(  )
A.[5,+∞)B.[2,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=1,a2=2,an+2-an=3,则当n为偶数时,数列{an}的前n项和Sn=(  )
A.$\frac{{3{n^2}}}{8}$-$\frac{1}{4}$B.$\frac{{3{n^2}}}{8}$+$\frac{1}{4}$C.$\frac{{3{n^2}}}{4}$D.$\frac{{3{n^2}}}{8}$

查看答案和解析>>

同步练习册答案