·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ËùÇó¶¨Öµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬$\frac{2}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1ÇÒ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a2-b2=c2£¬
¼´a2=4£¬b2=2£¬
ÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©µ±Ö±ÏßACµÄбÂʲ»´æÔÚʱ£¬
±ØÓÐP£¨¡À$\sqrt{2}$£¬0£©£¬´Ëʱ|AC|=2£¬S¡÷AOC=$\sqrt{2}$£»
µ±Ö±ÏßACµÄбÂÊ´æÔÚʱ£¬ÉèÆäбÂÊΪk¡¢µãP£¨x0£¬y0£©£¬
ÔòAC£ºy-y0=k£¨x-x0£©£¬
ÓëÍÖÔ²C1ÁªÁ¢£¬µÃ£¨1+2k2£©x2+4k£¨y0-kx0£©x+2£¨y0-kx0£©2-4=0£¬
ÉèA£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2k£¨{y}_{0}-k{x}_{0}£©}{1+2{k}^{2}}$£¬
¼´x0=-2ky0£¬ÓÖx02+2y02=2£¬y02=$\frac{1}{1+2{k}^{2}}$£¬
S¡÷AOC=$\frac{1}{2}$•$\frac{|{y}_{0}-k{x}_{0}|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{2}£¨{y}_{0}-k{x}_{0}£©^{2}-4£¨1+2{k}^{2}£©[2£¨{y}_{0}-k{x}_{0}£©^{2}-4]}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{|{y}_{0}-k{x}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨{y}_{0}-k{x}_{0}£©^{2}}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{£¨1+2{k}^{2}£©|{y}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨1+2{k}^{2}£©}}{1+2{k}^{2}}$
=$\sqrt{2}$|y0|•$\sqrt{1+2{k}^{2}}$=$\sqrt{2}$£®
×ÛÉÏ£¬ÎÞÂÛPÔõÑù±ä»¯£¬¡÷AOCµÄÃæ»ýΪ³£Êý$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ö±Ïßa£¬b¶¼Æ½ÐÐÓÚͬһ¸öÆ½Ãæ | B£® | Ö±ÏßaƽÐÐÓÚÖ±ÏßbËùÔ򵀮½Ãæ | ||
| C£® | Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһÌõÖ±Ïß | D£® | Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһ¸öÆ½Ãæ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -8 | B£® | 10 | C£® | 12 | D£® | 15 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a¡Ý2 | B£® | a£¾2 | C£® | a¡Ý1 | D£® | a£¾1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $4+\frac{2¦Ð}{3}$ | B£® | $8+\frac{2¦Ð}{3}$ | C£® | $4+\frac{4¦Ð}{3}$ | D£® | $6+\frac{4¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com