9£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$ºÍÍÖÔ²C2£º$\frac{{x}^{2}}{2}+{y}^{2}$=1µÄÀëÐÄÂÊÏàͬ£¬Çҵ㣨$\sqrt{2}$£¬1£©ÔÚÍÖÔ²C1ÉÏ£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèPΪÍÖÔ²C2ÉÏÒ»¶¯µã£¬¹ýµãP×÷Ö±Ïß½»ÍÖÔ²C1ÓÚA¡¢CÁ½µã£¬ÇÒPǡΪÏÒACµÄÖе㣮ÊÔÅжϡ÷AOCµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ËùÇó¶¨Öµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬$\frac{2}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1ÇÒ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a2-b2=c2£¬
¼´a2=4£¬b2=2£¬
ÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»    
£¨2£©µ±Ö±ÏßACµÄбÂʲ»´æÔÚʱ£¬
±ØÓÐP£¨¡À$\sqrt{2}$£¬0£©£¬´Ëʱ|AC|=2£¬S¡÷AOC=$\sqrt{2}$£»
µ±Ö±ÏßACµÄбÂÊ´æÔÚʱ£¬ÉèÆäбÂÊΪk¡¢µãP£¨x0£¬y0£©£¬
ÔòAC£ºy-y0=k£¨x-x0£©£¬
ÓëÍÖÔ²C1ÁªÁ¢£¬µÃ£¨1+2k2£©x2+4k£¨y0-kx0£©x+2£¨y0-kx0£©2-4=0£¬
ÉèA£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2k£¨{y}_{0}-k{x}_{0}£©}{1+2{k}^{2}}$£¬
¼´x0=-2ky0£¬ÓÖx02+2y02=2£¬y02=$\frac{1}{1+2{k}^{2}}$£¬
S¡÷AOC=$\frac{1}{2}$•$\frac{|{y}_{0}-k{x}_{0}|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{2}£¨{y}_{0}-k{x}_{0}£©^{2}-4£¨1+2{k}^{2}£©[2£¨{y}_{0}-k{x}_{0}£©^{2}-4]}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{|{y}_{0}-k{x}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨{y}_{0}-k{x}_{0}£©^{2}}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{£¨1+2{k}^{2}£©|{y}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨1+2{k}^{2}£©}}{1+2{k}^{2}}$
=$\sqrt{2}$|y0|•$\sqrt{1+2{k}^{2}}$=$\sqrt{2}$£®
×ÛÉÏ£¬ÎÞÂÛPÔõÑù±ä»¯£¬¡÷AOCµÄÃæ»ýΪ³£Êý$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®µÈ²îÊýÁÐ{an}ÖУ¬a3-a7=-12£¬a4+a6=-4£¬ÇóËüµÄǰ10ÏîºÍS10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ60¡ã£¬$\overrightarrow a=£¨2£¬0£©$£¬$|{\overrightarrow b}$|=1£¬Ôò$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª¹ýÍÖÔ²µÄÓÒ½¹µãÇÒбÂÊΪ1µÄÖ±ÏßÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏཻÓÚA£¬BÁ½µã£¬ÈôÍÖÔ²ÀëÐÄÂÊΪ$\frac{1}{2}$£¬¶ÌÖ᳤Ϊ2$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÇóÏß¶ÎABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÃüÌâ¡°¿Õ¼äÁ½Ö±Ïßa£¬b»¥ÏàÆ½ÐС±³ÉÁ¢µÄ³ä·ÖÌõ¼þÊÇ£¨¡¡¡¡£©
A£®Ö±Ïßa£¬b¶¼Æ½ÐÐÓÚͬһ¸öÆ½ÃæB£®Ö±ÏßaƽÐÐÓÚÖ±ÏßbËùÔ򵀮½Ãæ
C£®Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһÌõÖ±ÏßD£®Ö±Ïßa£¬b¶¼´¹Ö±ÓÚͬһ¸öÆ½Ãæ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô±äÁ¿x¡¢yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+2y¡Ü2}\\{x+y¡Ý0}\\{x¡Ü4}\end{array}\right.$Ôòz=4x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-8B£®10C£®12D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É輯ºÏA={x|1£¼x£¼2}£¬B={x|x¡Üa}£¬ÈôA⊆B£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ý2B£®a£¾2C£®a¡Ý1D£®a£¾1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈçͼΪij¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýµÈÓÚ£¨¡¡¡¡£©
A£®$4+\frac{2¦Ð}{3}$B£®$8+\frac{2¦Ð}{3}$C£®$4+\frac{4¦Ð}{3}$D£®$6+\frac{4¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãPΪÍÖÔ²CÉϵÄÈÎÒâÒ»µã£¬ÈôÒÔF1£¬F2£¬PÈýµãΪ¶¥µãµÄÈý½ÇÐÎÒ»¶¨²»¿ÉÄÜΪµÈÑü¶Û½ÇÈý½ÇÐΣ¬ÔòÍÖÔ²CµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨0£¬$\frac{1}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸