精英家教网 > 高中数学 > 题目详情
20.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}$|=1,则$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.

分析 计算$\overrightarrow{a}•\overrightarrow{b}$,再计算($\overrightarrow{a}+2\overrightarrow{b}$)2,开方即可得出$|{\overrightarrow a+2\overrightarrow b}$|.

解答 解:|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=2×$1×\frac{1}{2}$=1.
∴($\overrightarrow{a}+2\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}$=12,
∴$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,an=2-n,{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数的值域:y=2sin($\frac{x}{2}$-$\frac{π}{6}$)+1,x∈[-π,π].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=sin(ωx+φ)(x∈R)$(ω>0,|φ|<\frac{π}{2})$的部分图象如图所示,如果${x_1},{x_2}∈(\frac{π}{6},\frac{2π}{3})$,且f(x1)=f(x2),则f(x1+x2)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱锥P-ABC中,∠PAC=∠BAC=90°,PA=PB,点D,F分别为BC,AB的中点.
(1)求证:直线DF∥平面PAC;
(2)求证:PF⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:y=kx+b,曲线C:x2+y2=1,则“b=1”是“直线l与曲线C有公共点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{{\begin{array}{l}{x+6,x≤2}\\{{3^x}-1,x>2}\end{array}}\right.$,若f(a)=80,则f(a-4)=(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$和椭圆C2:$\frac{{x}^{2}}{2}+{y}^{2}$=1的离心率相同,且点($\sqrt{2}$,1)在椭圆C1上.
(1)求椭圆C1的方程;
(2)设P为椭圆C2上一动点,过点P作直线交椭圆C1于A、C两点,且P恰为弦AC的中点.试判断△AOC的面积是否为定值?若是,求出此定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x、y满足约束条件$\left\{\begin{array}{l}{x-2y+2≥0}\\{3x-2y-6≤0}\\{x≥0,y≥0}\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的最大值为12,则a2+b2的最小值为(  )
A.$\frac{25}{4}$B.$\frac{49}{9}$C.$\frac{144}{25}$D.$\frac{225}{49}$

查看答案和解析>>

同步练习册答案