精英家教网 > 高中数学 > 题目详情
15.如图,在三棱锥P-ABC中,∠PAC=∠BAC=90°,PA=PB,点D,F分别为BC,AB的中点.
(1)求证:直线DF∥平面PAC;
(2)求证:PF⊥AD.

分析 (1)由三角形中位线定理得DF∥AC,由此能证明直线DF∥平面PAC.
(2)由AC⊥AB,AC⊥AP,得AC⊥平面PAB,从而AC⊥PF,再推导出PF⊥AB,从而PF⊥平面ABC,由此能证明AD⊥PF.

解答 证明:(1)∵点D,F分别为BC,AB的中点,
∴DF∥AC,
又∵DF?平面PAC,AC?平面PAC,
∴直线DF∥平面PAC. …(6分)
(2)∵∠PAC=∠BAC=90°,
∴AC⊥AB,AC⊥AP,
又∵AB∩AP=A,AB,AP在平面PAB内,
∴AC⊥平面PAB,…(8分)
∵PF?平面PAB,∴AC⊥PF,
∵PA=PB,F为AB的中点,∴PF⊥AB,
∵AC⊥PF,PF⊥AB,AC∩AB=A,AC,AB在平面ABC内,
∴PF⊥平面ABC,…(12分)
∵AD?平面ABC,∴AD⊥PF. …(14分)

点评 本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(x,-1,0),$\overrightarrow{b}$=(3,x2,9)的夹角为钝角,则实数x的取值范围为(-∞,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b是实数,b>0,函数f(x)=1+asinbx的图象如图所示,则符合条件的函数y=loga(x+b)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以椭圆$\frac{x^2}{4}+\frac{y^2}{2}$=1的焦距为实轴,短轴为虚轴的双曲线方程为(  )
A.x2-4y2=2B.x2-y2=2C.x2-2y2=1D.2x2-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为(  )
A.120B.240C.360D.480

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知平面向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}$|=1,则$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.A,B分别是y=kx和$y=-\frac{1}{k}x$与椭圆$\frac{x^2}{2}+{y^2}=1$的交点,点P在线段AB上,且$\overrightarrow{OA}•\overrightarrow{OP}=\overrightarrow{OB}•\overrightarrow{OP}$,当k变化时,点P一定在(  )
A.双曲线x2-2y2=1上B.椭圆${x^2}+\frac{y^2}{2}=1$上
C.圆${x^2}+{y^2}=\frac{1}{3}$上D.圆${x^2}+{y^2}=\frac{2}{3}$上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“空间两直线a,b互相平行”成立的充分条件是(  )
A.直线a,b都平行于同一个平面B.直线a平行于直线b所在的平面
C.直线a,b都垂直于同一条直线D.直线a,b都垂直于同一个平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组[1,3),第二组[3,5),第三组[5,7),第四组[7,9),第五组[9,11],绘制成如图所示的频率分布直方图.
(Ⅰ)求学习时间在[7,9)的学生人数;
(Ⅱ)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人的学习时间在第四组的概率.

查看答案和解析>>

同步练习册答案