| A. | x2-4y2=2 | B. | x2-y2=2 | C. | x2-2y2=1 | D. | 2x2-y2=1 |
分析 求出椭圆的焦点坐标和短轴的端点坐标,设出双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),求得a=b=$\sqrt{2}$,即可得到所求方程.
解答 解:椭圆$\frac{x^2}{4}+\frac{y^2}{2}$=1的焦点为(±$\sqrt{2}$,0),
短轴的两端点为(0,±$\sqrt{2}$),
设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
则a=$\sqrt{2}$,b=$\sqrt{2}$,
即有双曲线的方程为x2-y2=2.
故选:B.
点评 本题考查双曲线的方程的求法,注意运用椭圆的焦点坐标和短轴的端点,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{3}$,$\frac{π}{3}$] | B. | [-$\frac{π}{4}$,$\frac{π}{2}$] | C. | [-$\frac{π}{3}$,$\frac{π}{6}$] | D. | [0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [0,1] | C. | (-1,0) | D. | (0,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com