精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知动点到定点的距离与到定直线的距离之比为

(1)求动点的轨迹的方程;

(2)已知为定直线上一点.

①过点的垂线交轨迹于点不在轴上),求证:直线的斜率之积是定值;

②若点的坐标为,过点作动直线交轨迹于不同两点,线段上的点满足,求证:点恒在一条定直线上.

【答案】(1)(2)①直线的斜率之积为定值

②点在定直线上.

【解析】试题分析:(1)设动点坐标,直接利用轨迹方程定义计算即可;(2)

①令,由,得,即,即,又因为点在椭圆上,所以,而的斜率分别为,于是,即直线的斜率之积为定值 ②令,则,代入椭圆,消元即可证明点在定直线上.

试题解析:(1)设,则,点到直线的距离

,得,化简得

即点在轨迹的方程为

(2)因为为直线上一点,所以令

①令,由,得,即,即

又因为点在椭圆上,所以

的斜率分别为

于是

即直线的斜率之积为定值

②令,则

令点,则

,即

由①×③,②×④,得

因为在椭圆上,所以

⑤×2+⑥×3,得

,即

所以点在定直线上.

本题主要考查了椭圆的方程及直线与椭圆的位置关系,是高考的必考点,属于难题.求椭圆方程的方法一般就是根据条件建立的方程,求出即可,注意的应用;涉及直线与圆锥曲线相交时,未给出直线时需要自己根据题目条件设直线方程,要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏,然后要联立方程组,得一元二次方程,利用根与系数关系写出,再根据具体问题应用上式,其中要注意判别式条件的约束作用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有甲、乙两个粮食经销商每次在同一粮食生产地以相同的价格购进粮食,他们共购进粮食两次,各次的粮食价格不同,甲每次购粮10000千克,乙每次购粮食10000元,在两次统计中,购粮的平均价格较低的是(
A.甲
B.乙
C.一样低
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,﹣1).
(Ⅰ)求过P点且与原点距离为2的直线l的方程;
(Ⅱ)求过P点且与两坐标轴截距相等的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形ABCD所在平面与等腰直角三角形BEC所在平面互相垂直,BE⊥EC,AB=BE,M为线段AE的中点.
(Ⅰ) 证明:BM⊥平面AEC;
(Ⅱ) 求MC与平面DEC所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a3=24,S11=0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为A1 , A2 , A3 , 乙协会编号为A4 , 丙协会编号分别为A5 , A6 , 若从这6名运动员中随机抽取2名参加双打比赛.
(1)用所给编号列出所有可能抽取的结果;
(2)求丙协会至少有一名运动员参加双打比赛的概率;
(3)求参加双打比赛的两名运动员来自同一协会的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AC=2,BC=1,

(1)求AB的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)如图,底面是正三角形的直三棱柱中,D是BC的中点,.

)求证:平面

)求的A1 到平面的距离.

查看答案和解析>>

同步练习册答案