精英家教网 > 高中数学 > 题目详情
17.函数f(x)=x3-bx2+x在(0,$\frac{2}{3}$)内有极值,则b的范围是($\sqrt{3}$,+∞).

分析 由已知得f′(x)=0有实数根在(0,$\frac{2}{3}$),由此能求出实数b的取值范围.

解答 解:∵函数f(x)=x3-bx2+x,
∴f′(x)=3x2-2bx+1,
∵函数f(x)=x3-bx2+x在(0,$\frac{2}{3}$)内有极值,
∴f′(x)=3x2-2bx+1=0有两个不相等的实数根,并且至少有一个根在(0,$\frac{2}{3}$).
∴△=4b2-12>0,可得:b$>\sqrt{3}$或b$<-\sqrt{3}$,3x2-2bx+1=0有两个不相等的实数根,
x1x2=$\frac{1}{3}$,可知两个根同号,
至少有一个根在(0,$\frac{2}{3}$).说明两个根都是正根,b$>\sqrt{3}$.
一个根在(0,$\frac{2}{3}$)内时,
可得f′(0)•f′($\frac{2}{3}$)<0,
即:$3×\frac{4}{9}-2b×\frac{2}{3}+1<0$.解得:b$>\frac{7}{4}$.
两个根在(0,$\frac{2}{3}$)内时,
$\left\{\begin{array}{l}{0<\frac{b}{3}<\frac{2}{3}}\\{3×\frac{4}{9}-2b×\frac{2}{3}+1≥0}\\{b>\sqrt{3}}\end{array}\right.$,解得b∈($\sqrt{3},\frac{7}{4}$]
综上实数b的取值范围是($\sqrt{3}$,+∞).
故答案为:($\sqrt{3}$,+∞).

点评 本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知映射f:A→B中,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).
(1)求A中元素(1,2)的象;
(2)求B中元素(1,2)的原象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若I,∅分别表示全集与空集,且(∁IP)∪M?P,则集合P,M必须满足(  )
A.∅?P?MB.M?P?IC.M=∅D.P=I且M≠P

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)满足2f(-x)+f(x)=x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a,b为异面直线,a⊥b,c与a成30°角,则c与b所成角的范围是[60°,90°].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={1,3,x},B={1,x2},设全集为U=A∪B,若B∪(∁UB)=A,求∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两个函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{{x}^{2},x≤0}\end{array}\right.$.
(1)当x≤0时,求f(g(x))的解析式;
(2)当x<0时,求g(f(x))的解析式;
(3)解不等式g(x)>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列极限:
(1)$\underset{lim}{n→∞}$($\sqrt{n+1}$-$\sqrt{n}$);
(2)$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n}$);
(3)$\underset{lim}{n→∞}$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+2}-\sqrt{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{1}{{2x-{x^2}}}$,则f(x)的值域是(-∞,0)∪[1,+∞).

查看答案和解析>>

同步练习册答案