精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足方程(x-2)2+y2=3.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.

分析 (1)令$\frac{y}{x}$=k,$\frac{y}{x}$的最值,就是圆心到直线的距离等于半径时的k的值.
(2)设$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,由此能求出y-x的最大值和最小值.
(3)由$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,能求出x2+y2的最大值和最小值.

解答 解:(1)圆(x-2)2+y2=3,圆心(2,0),半径为r=$\sqrt{3}$,
令$\frac{y}{x}$=k,即kx-y=0,$\frac{y}{x}$的最值,就是圆心到直线的距离等于半径时的k的值,
∴$\frac{|2k|}{\sqrt{1+{k}^{2}}}$=$\sqrt{3}$,解得k=±$\sqrt{3}$,∴$\frac{y}{x}$的最大值为$\sqrt{3}$,最小值为-$\sqrt{3}$.
(2)∵圆(x-2)2+y2=3,圆心(2,0),半径为r=$\sqrt{3}$,
∴$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$,
∴y-x=$\sqrt{3}$sin$θ-\sqrt{3}cosθ$-2=$\sqrt{6}$sin(θ-$\frac{π}{4}$)-2,
∴y-x的最大值是$\sqrt{6}-2$,最小值是-$\sqrt{6}$-2.
(3)x2+y2=(2+$\sqrt{3}cosθ$)2+($\sqrt{3}$sinθ)2=4$\sqrt{3}cos$θ+7,
∴x2+y2的最大值为$4\sqrt{3}+7$,最小值为$7-4\sqrt{3}$.

点评 本题考查圆的性质的应用,是中档题,解题时要认真审题,注意圆的参数方程的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(x)=2sinωx(cosωx+sinωx)的图象在x∈[0,1]上恰有一个对称轴和一个对称中心,则实数ω的取值范围为(  )
A.($\frac{3π}{8}$,$\frac{5π}{8}$)B.[$\frac{3π}{8}$,$\frac{5π}{8}$)C.($\frac{3π}{8}$,$\frac{5π}{8}$]D.[$\frac{3π}{8}$,$\frac{5π}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{-lo{g}_{2}x,x≤1}\end{array}\right.$,若正实数m,n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$\overrightarrow{AB}$={5,-3),$\overrightarrow{AC}$=(-1,7),$\overrightarrow{AM}$=$\overrightarrow{MB}$,$\overrightarrow{AN}$=$\overrightarrow{NC}$,则$\overrightarrow{MN}$等于(-3,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设0≤θ≤$\frac{π}{2}$,向量$\overrightarrow{a}$=(sinθ,cosθ-sinθ),$\overrightarrow{b}$=(cosθ+sinθ,1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则θ等于(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα+sinβ=$\sqrt{2}$,cosα+cosβ=$\frac{\sqrt{2}}{3}$,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用系统抽样的方法从含有51个个体的总体中抽取一个容量为5的样本,则个体m被抽到的概率为$\frac{5}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求1g5(1g8+1g1000)+(1g${2}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+1g0.06的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的三个顶点分别是A(4,0),B(6,7),C(0,3).
(1)求BC边上的高所在的直线方程;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案