| A. | (0,$\frac{3}{4}$) | B. | ($\frac{1}{2}$,$\frac{3}{4}$) | C. | (0,$\frac{1}{2}$) | D. | [$\frac{3}{4}$,+∞) |
分析 求出原函数的导函数,由导函数在[-1,1]上小于等于0恒成立可得x2+2(1-a)x-2a≤0对x∈[-1,1]恒成立.转化为关于a的不等式组求解.
解答 解:由f (x)=(x2-2ax)ex,得f′(x)=(2x-2a)ex+(x2-2ax)ex=ex(x2-2ax+2x-2a).
∵f (x)在[-1,1]上是单调减函数,
∴f′(x)=ex(x2-2ax+2x-2a)≤0对x∈[-1,1]恒成立.
即x2+2(1-a)x-2a≤0对x∈[-1,1]恒成立.
∴$\left\{\begin{array}{l}{(-1)^{2}-2(1-a)-2a≤0}\\{{1}^{2}+2(1-a)-2a≤0}\end{array}\right.$,解得a$≥\frac{3}{4}$.
∴a的取值范围是[$\frac{3}{4}$,+∞).
故选:D.
点评 本题考查利用导数研究函数的单调性,考查二次函数的性质,体现了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{4}{5}i$ | C. | $\frac{6}{5}$ | D. | $\frac{6}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-y=0 | B. | x+y=0 | C. | x+2y-3=0 | D. | (x+1)2+(y-2)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{60}{289}$ | B. | $\frac{90}{289}$ | C. | $\frac{120}{289}$ | D. | $\frac{240}{289}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{π}{6}]$ | B. | $[\frac{π}{3},\frac{π}{2}]$ | C. | $(0,\frac{π}{3}]$ | D. | $[\frac{π}{3},π)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com