精英家教网 > 高中数学 > 题目详情
设P是等轴双曲线x2-y2=a2(a>0)右支上一点,F1,F2是左、右焦点,若
PF2
F1F2
=0,|
PF1
|=6,求双曲线的方程.
考点:双曲线的标准方程
专题:
分析:根据题意可得∴|PF1|-|PF2|=2a,|F1F2|=2
2
a.,直角三角形可得:|PF1|2=|PF2|2+8a2,求出a即可得出方程.
解答: 解:∵P是等轴双曲线x2-y2=a2(a>0)右支上一点,F1,F2是其左,右焦点,
∴|PF1|-|PF2|=2a,|F1F2|=2
2
a

PF2
F1F2
=0,|
PF1
|=6,
∴∠PF2F1=90°,
根据直角三角形中的边的关系得出:|PF1|2=|PF2|2+8a2,PF1=6,
∴36=(6-2a)2+8a2,a>0
∴a=2,
∴双曲线方程为:x2-y2=4,
点评:本题主要考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系,双曲线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,是高考的重点,易错点是双曲线的知识体系不牢固
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C以直线x±2y=0为渐近线,且经过点A(2,-2),则双曲线C的方程是(  )
A、
x2
3
-
y2
12
=1
B、
x2
12
-
y2
3
=1
C、
y2
12
-
x2
3
=1
D、
y2
3
-
x2
12
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足下列条件的直线的方程:
(1)经过点A(3,2)且与直线4x+y-2=0平行;
(2)经过点C(2,-3),且平行于过点M(1,2)和N(-1,-5)的直线;
(3)经过点B(3,0),且与直线2x+y-5=0垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[
1
3
,e]上的值域;
(2)对?x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有lnx>
1
ex
-
2
ex
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P点在圆O内,弦AB的中点是P,圆内接正三角形的边长为a,则|AB|≥a的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by+a+b=0与圆x2+y2=r2恒有公共点 则r的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是抛物线y2=4x的焦点,过点(2,1)的直线与抛物线相交于A,B两点
(1)若点F在直线AB上,求|AB|的值;
(2)若点P是线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα,cosα是关于x的方程x2-ax+a=0的两个根,则
1+cos2α-sin2α
1-sin2α-cos2α
+
1-sin2α-cos2α
1+cos2α-sin2α
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=x2+(a-1)x+a有两个正零点,则a的取值范围为
 

查看答案和解析>>

同步练习册答案