分析 正四棱锥P-ABCD的外接球的球心在它的高PE上,求出球的半径,求出球的体积.
解答
解:如图,正四棱锥P-ABCD中,PE为正四棱锥的高,根据球的相关知识可知,正四棱锥的外接球的球心O必在正四棱锥的高线PE所在的直线上,延长PE交球面于一点F,连接AE,AF,
由球的性质可知△PAF为直角三角形且AE⊥PF,根据平面几何中的射影定理可得PA2=PF•PE,
因为AE=2,
所以侧棱长PA=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,PF=2R,
所以20=2R×4,所以R=$\frac{5}{2}$,
所以球的体积V=$\frac{4}{3}$πR3=$\frac{125}{6}$π
故答案为:$\frac{125}{6}$π.
点评 本题考查球的体积,球的内接几何体问题,考查计算能力,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com