精英家教网 > 高中数学 > 题目详情
9.在极坐标系下,点$A(2,\frac{3π}{4})$到直线l:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$的距离为(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$2-\frac{{\sqrt{2}}}{2}$D.$2+\frac{{\sqrt{2}}}{2}$

分析 把极坐标系下的点与直线l化为普通坐标系方程,计算点到直线的距离即可.

解答 解:极坐标系下,点$A(2,\frac{3π}{4})$化为普通坐标系是
A(2cos$\frac{3π}{4}$,2sin$\frac{3π}{4}$),即A(-$\sqrt{2}$,$\sqrt{2}$);
直线l:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$化简为
ρcosθcos$\frac{π}{4}$+ρsinθsin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
化为普通坐标系是x+y=1;
则A(-$\sqrt{2}$,$\sqrt{2}$)到直线x+y-1=0的距离为:
d=$\frac{|-\sqrt{2}+\sqrt{2}-1|}{\sqrt{{1}^{2}{+1}^{2}}}$=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若f(x)是定义在实数集上的奇函数.且当x>0时恒有f(x)+xf′(x)>0,则(  )
A.-2f(-2)<-ef(-e)<3f(3)B.-ef(-e)<-2f(-2)<3f(3)C.3f(3)<-ef(-e)<-2f(-2)D.-2f(-2)<3f(3)<-ef(-e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.先观察不等式(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$)(b${\;}_{1}^{2}$+b${\;}_{2}^{2}$)≥(a1b1+a2b22(a1、a2、b1、b2∈R)的证明过程:设平面向量$\overrightarrow{α}$=(a1,b1),$\overrightarrow{β}$=(a2,b2),则|$\overrightarrow{α}$|=$\sqrt{{a}_{1}^{2}+{b}_{1}^{2}}$,|$\overrightarrow{β}$|=$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2
∵|$\overrightarrow{α}$•$\overrightarrow{β}$|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2|≤$\sqrt{{a}_{1}^{2}{+b}_{1}^{2}}$•$\sqrt{{a}_{2}^{2}+{b}_{2}^{2}}$,
∴(a1a2+b1b22≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$),
再类比证明:(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.点P(x0,y0)是曲线y=3lnx+x+k(k∈R)图象上一个定点,过点P的切线方程为4x-y-1=0,则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(3x-1)7=a0x7+a1x6+…+a6x+a7,则a0+a2+a4+a6=8256.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式1≤|x+2|≤5的解集为[-7,-3]∪[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-(-1)k2alnx(k∈N,a∈R且a>0).
(1)求f(x)的极值;
(2)若k=2016,关x的方程f(x)=2ax有唯一解,求a的值.
(3)k=2015时,证明:对一切x>0都有f(x)-x2>2a($\frac{1}{{e}^{x}}$-$\frac{2}{ex}$)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义在R上的可导函数,且f(-x)=-f(x)恒成立,若f′(-x0)=k≠0则f′(x0)=(  )
A.kB.-kC.$\frac{1}{k}$D.-$\frac{1}{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.化简$\frac{{cos({2π-α})tan({π-α})}}{{sin({π+α})}}$=1.

查看答案和解析>>

同步练习册答案