精英家教网 > 高中数学 > 题目详情
对于抛物线上任意一点,点都满足,则的取值范围是____  

试题分析:解:设Q( ,t),由|PQ|≥|a|得 (-a)2+t2≥a2,t2(t2+16-8a)≥0, t2+16-8a≥0,故t2≥8a-16恒成立,则8a-16≤0,a≤2,故a的取值范围是 (-∞,2],故答案为:(-∞,2].
点评:本题考查抛物线的标准方程,以及简单性质的应用,函数的恒成立问题,得到t2≥8a-16恒成立,是解题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

坐标系与参数方程在直角坐标系中,直线的参数方程为(t 为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(1)求圆C的直角坐标方程;
(2)设圆C与直线交于点A,B,若点P的坐标为(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆上的任意一点(除短轴端点除外)与短轴两个端点的连线交轴于点,则的最小值是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.

(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点
为椭圆上一点,且满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有一条长度为1的线段EF,其端点E、F分别在边长为3的正方形ABCD的四边上滑动,当F沿正方形的四边滑动一周时,EF的中点M所形成的轨迹长度最接近于(  )
A.8B.11
C.12D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点的距离为到直线的距离为,求证:为定值;
 
(3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,),试用表示;并求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程+=1({1,2,3,4,…,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

同步练习册答案