精英家教网 > 高中数学 > 题目详情
2.已知θ∈(0,$\frac{π}{2}$),p,q∈R,“p<q”是“(sinθ)p>(sinθ)q”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

分析 根据指数函数的单调性的关系结合充分条件和必要条件的定义进行判断即可.

解答 解:∵θ∈(0,$\frac{π}{2}$),
∴0<sinθ<1,
函数y=sinθx为减函数,根据指数函数的单调可知,p<q”?“(sinθ)p>(sinθ)q”,此时,“p<q”是“(sinθ)p>(sinθ)q”的充要条件,
故选:C.

点评 本题主要考查充分条件和必要条件的判断,利用指数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列不等式成立的是(  )
A.sin2<sin3B.cos2<cos3C.tan2<tan3D.cot2<cot3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求与椭圆$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{33}$=1有公共的焦点,且离心率为$\frac{4}{3}$的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(x+1),g(x)=ax-1(其中a>0且a≠1).
(1)求函数f(x)+g(x)的定义域;
(2)判断函数f(x)+g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={y|y<a或y>a2+1},B={y|y=$\frac{1}{2}$x2-x+$\frac{5}{2}$,0≤x≤3},
(1)若A∩B=∅,求a的取值范围;
(2)当a取使不等式x2+1≥ax恒成立的最小值时,求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.观察下面数列的特点,用适当的数填空,并写出每个数列的通项公式:
(1)10,20,30,40,50;
(2)1,$\sqrt{2}$,$\sqrt{3}$,2,$\sqrt{5}$,$\sqrt{6}$,$\sqrt{7}$;
(3)1,4,7,10,13,16,19;
(4)-$\frac{1}{2}$,$\frac{3}{4}$,-$\frac{5}{6}$,$\frac{7}{8}$,-$\frac{9}{10}$;
(5)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x3+bx2+cx+1,若f(5)=-1,则函数 y=f(x)零点的个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}的首项a1=b(b≠0)的前n项和为Sn,数列{Sn}为等比数列,q为公比,且0<q<1,
(1)求证:数列{an}以第二项起成等比数列;
(2)求:a1S1+a2S2+…+anSn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.二次函数f(x)=x2-6x+3,则以下判断错误的是(  )
A.f(5)>f(4)B.f(2)=f(4)C.f(0)<f(-1)D.f(2)<f($\sqrt{15}$)

查看答案和解析>>

同步练习册答案