精英家教网 > 高中数学 > 题目详情
6.已知变量$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$的最小值为-2,最小正周期为π,f(0)=1,则f(x)在区间[0,π]上的单调递增区间为(  )
A.$[{0,\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{2π}{3}}]$C.$[{\frac{2π}{3},π}]$D.$[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$

分析 利用正弦函数的最值求得A,利用周期性求得ω,根据f(0)=1求得φ的值,可得函数f(x)的解析式,再利用正弦函数的单调性求得f(x)在区间[0,π]上的单调递增区间.

解答 解:变量$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$的最小值为-2,最小正周期为π,
则A=2,$\frac{2π}{ω}$=π,∴ω=2.
∵f(0)=2sin(0+φ)=1,∴sinφ=$\frac{1}{2}$,∴φ=$\frac{π}{6}$,∴f(x)=2sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
再结合x∈[0,π],可得f(x)在区间[0,π]上的单调递增区间为[0,$\frac{π}{6}$]、[$\frac{2π}{3}$,π],
故选:D.

点评 本题主要考查正弦函数的最值、周期性、单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的S3=7,若4a1,2a2,a3成等差数列,则a1=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.曲线y=$\frac{x}{x+1}$在点(1,$\frac{1}{2}$)处的切线方程为x-4y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A1,A2,A3为平面上三个不共线的定点,平面上点M满足$\overrightarrow{{A}_{1}M}$=λ($\overrightarrow{{A}_{1}{A}_{2}}$+$\overrightarrow{{A}_{1}{A}_{3}}$)(λ是实数),且$\overrightarrow{M{A}_{1}}$+$\overrightarrow{M{A}_{2}}$+$\overrightarrow{M{A}_{3}}$是单位向量,则这样的点M有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},则M∪N=(  )
A.[0,3)B.[0,3]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.观察下面的算式:
${1^2}=\frac{1}{6}×1×2×3$,
${1^2}+{2^2}=\frac{1}{6}×2×3×5$,
${1^2}+{2^2}+{3^2}=\frac{1}{6}×3×4×7$,
则12+22+…+n2=$\frac{1}{6}n({n+1})({2n+1})$(其中n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=x-alnx,g(x)=-\frac{1+a}{x}(a∈R)$.
(Ⅰ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅱ)若不等式f(x)≤g(x)在区间[1,e](e=2.71828…)的解集为非空集合,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若抛物线x2=2py(p>0)的焦点与双曲线$\frac{y^2}{3}-{x^2}=1$的焦点重合,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$两个焦点为分别为F1(-1,0),F2(1,0),过点F2的直线l与该双曲线的右支交于M,N两点,且△F1MN是以N为直角顶点的等腰直角三角形,则a2为(  )
A.$\frac{{5-\sqrt{2}}}{17}$B.$\frac{{5+\sqrt{2}}}{17}$C.$\frac{{5-2\sqrt{2}}}{17}$D.$\frac{{5+2\sqrt{2}}}{17}$

查看答案和解析>>

同步练习册答案