精英家教网 > 高中数学 > 题目详情

(12分)(2010·徐州模拟)已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.

解 设g(x)=ax+b(a≠0),
则f[g(x)]=(ax+b)2-2(ax+b)+1
=a2x2+(2ab-2a)x+b2-2b+1=4x2.

∴g(x)=2x+1或g(x)=-2x+1.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数满足,及.
(1)求的解析式;
(2)若,试求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 已知的反函数为.
(1)若,求的取值范围D;
(2)设函数,当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在上的奇函数,且,若时,有.
(1)解不等式
(2)若对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233
(1)求的解析式;
(2)若上为增函数,求的取值范围;
(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)
函数f(x)=(a x+a -x),  (a>0且a≠1)
(1) 讨论f(x)的奇偶性
(2) 若函数f(x)的图象经过点(2,), 求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分)已知函数的图像与函数的图像关于点
对称
(1)求函数的解析式;
(2)若在区间上的值不小于6,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)若函数y=lg(3-4x+x2)的定义域为M,.当x∈M时,
求f(x)=2x+2-3×4x的最值及相应的x的值.

查看答案和解析>>

同步练习册答案