【题目】定义在
上的函数
满足下列两个条件:(1)对任意的
恒有
成立;(2)当
时,
;记函数
,若函数
恰有两个零点,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
根据题中的条件得到函数的解析式为:f(x)=﹣x+2b,x∈(b,2b],又因为f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可
因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,
且当x∈(1,2]时,f(x)=2﹣x;
f(x)=2(2
)=4﹣x,x∈(2,4],
f(x)=4(2
)=8﹣x,x∈(4,8],
…
所以f(x)=﹣x+2b,x∈(b,2b].(b取1,2,4…)
由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,
如图所示只需过(1,0)的直线与线段AB相交即可(可以与B点重合但不能与A点重合)kPA
2,kPB
,
所以可得k的范围为![]()
故选:C.
![]()
科目:高中数学 来源: 题型:
【题目】某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.
![]()
(I)求该市高一学生身高高于1.70米的概率,并求图1中
的值.
(II)若从该市高一学生中随机选取3名学生,记
为身高在
的学生人数,求
的分布列和数学期望;
(Ⅲ)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果该市高一学生的身高满足近似于正态分布
的概率分布,则认为该市高一学生的身高发育总体是正常的.试判断该市高一学生的身高发育总体是否正常,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
![]()
附:
的观测值![]()
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|
<0}.
(1)当a=3时,求A∩B;
(2)若A∪B=R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为A,上顶点为B.已知椭圆的离心率为
,
.
(1)求椭圆的方程;
(2)设直线
与椭圆交于
,
两点,
与直线
交于点M,且点P,M均在第四象限.若
的面积是
面积的2倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,其离心率
,点P为椭圆上的一个动点,
面积的最大值为
.
(1)求椭圆的标准方程;
(2)若A,B,C,D是椭圆上不重合的四个点,AC与BD相交于点
,
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若
,判断函数
的奇偶性,并加以证明;
(2)若函数
在
上是增函数,求实数
的取值范围;
(3)若存在实数
使得关于
的方程
有三个不相等的实数根,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com