【题目】已知函数,.
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数在上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.
【答案】(1)奇函数,(2),(3)
【解析】
试题分析:(1)函数奇偶性的判定,一要判定定义域是否关于原点对称,二要判定与是否相等或相反,(2)函数 是分段函数,每一段都是二次函数的一部分,因此研究 单调性,必须研究它们的对称轴,从图像可观察得到实数 满足的条件: ,(3)研究方程根的个数,通常从图像上研究,结合(2)可研究出函数图像.分三种情况研究,一是上单调增函数,二是先在上单调增,后在上单调减,再在上单调增,三是先在上单调增,后在上单调减,再在上单调增.
试题解析:(1)函数为奇函数.[来
当时,,,∴
∴函数为奇函数; 3分
(2),当时,的对称轴为:;
当时,的对称轴为:;∴当时,在R上是增函数,即时,函数在上是增函数; 7分
(3)方程的解即为方程的解.
①当时,函数在上是增函数,∴关于的方程不可能有三个不相等的实数根; 9分
②当时,即,∴在上单调增,在上单调减,在上单调增,∴当时,关于的方程有三个不相等的实数根;即,∵∴.
设,∵存在使得关于的方程有三个不相等的实数根, ∴,又可证在上单调增
∴∴; 12分
③当时,即,∴在上单调增,在上单调减,在上单调增,
∴当时,关于的方程有三个不相等的实数根;
即,∵∴,设
∵存在使得关于的方程有三个不相等的实数根,
∴,又可证在上单调减∴
∴; 15分
综上:. 16分
科目:高中数学 来源: 题型:
【题目】已知a>0,设命题p:函数y=ax在R上单调增;命题q:不等式ax2﹣ax+1>0对任意实数x恒成立.若p∧q假,p∨q真,则a的取值范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 与p,且乙投球2次均未命中的概率为 . (Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某球星在三分球大赛中命中率为 ,假设三分球大赛中总计投出8球,投中一球得3分,投丢一球扣一分,则该球星得分的期望与方差分别为( )
A.16,32
B.8,32
C.8,8
D.32,32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定义域;
(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖,又叫属相,是中国与十二地支相配以人出生年份的十二种动物,包括鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的属相均是龙,丁、戊的属相均是虎,己的属相是猴,现从这六人中随机选出三人,则所选出的三人的属相互不相同的概率等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}的通项公式分别是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 对任意n∈N+恒成立,则实数a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com