精英家教网 > 高中数学 > 题目详情
14.函数f(x)=sinx+cosx在点(0,f(0))处的切线方程为x-y+1=0.

分析 先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答 解:∵f(x)=sinx+cosx
∴f′(x)=cosx-sinx
∴f'(0)=1,所以函数f(x)在点(0,f(0))处的切线斜率为1;
又f(0)=1,
∴函数f(x)=sinx+cosx在点(0,f(0))处的切线方程为:
y-1=x-0.即x-y+1=0.
故答案为:x-y+1=0.

点评 本小题主要考查学生会利用导数求曲线上过某点切线方程的斜率,考查直线的斜率、导数的几何意义等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,-1),当$\overrightarrow{b}$=($\sqrt{3}$cos$\frac{x}{2}$+sin$\frac{x}{2}$,y)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,有函数y=f(x)
(Ⅰ)若f(x)=$\frac{5}{6}$,求sin(2x+$\frac{π}{6}$)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足cosC=$\frac{2b-c}{2a}$,求函数f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知p:x2-1>0,则下列条件可以是p成立的充分不必要条件的是(  )
A.x<-0.1B.x≥1C.x<-1或x>1D.x<-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{ax-2}{x-1}$在区间(2,4)上单调递减,则实数α的取值范囤a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在矩形ABCD中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,点E,F分别是边BC,CD的中点,则($\overrightarrow{AE}$+$\overrightarrow{AF}$)•$\overrightarrow{AC}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(x2+$\frac{1}{x^2}$-2)3的展开式中常数项为20. (结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}满足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]与{an}分别表示an的整数部分与分数部分),则a2014=(  )
A.3020+$\sqrt{3}$B.3020+$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$+3018D.3018+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,a1=2,公差为d,则“d=4”是“a1,a2,a3成等比数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}通项公式an=2n,其前n项和Sn,数列{bn}是以$\frac{1}{2}$为首项的等比数列,且${b_1}{b_2}{b_3}=\frac{1}{64}$.
(1)求数列{bn}的通项公式;
(2)记Cn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,求Cn
(3)设数列{bn}的前n项和为Tn,若对任意n∈N*不等式Cn≥$\frac{1}{4}t-\frac{1}{2}{T_n}$恒成立,求t的取值范围.

查看答案和解析>>

同步练习册答案