精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,-1),当$\overrightarrow{b}$=($\sqrt{3}$cos$\frac{x}{2}$+sin$\frac{x}{2}$,y)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,有函数y=f(x)
(Ⅰ)若f(x)=$\frac{5}{6}$,求sin(2x+$\frac{π}{6}$)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足cosC=$\frac{2b-c}{2a}$,求函数f(B)的取值范围.

分析 (I)利用向量垂直与数量积的关系、倍角公式、和差公式可得f(x),再利用倍角公式即可得出.
(II)由$cosC=\frac{2b-c}{2a}$,得2acosC+c=2b.根据正弦定理可得:cosA.再利用三角函数的单调性即可得出.

解答 解:(Ⅰ)∵$\overrightarrow a⊥\overrightarrow b$,∴$\overrightarrow a•\overrightarrow b=0$,
得$y=sin\frac{x}{2}({\sqrt{3}cos\frac{x}{2}+sin\frac{x}{2}})=\frac{{\sqrt{3}}}{2}sinx-\frac{1}{2}cosx+\frac{1}{2}=sin({x-\frac{π}{6}})+\frac{1}{2}$.
即$f(x)=sin({x-\frac{π}{6}})+\frac{1}{2}$,∵$f(x)=\frac{5}{6}$,∴$sin({x-\frac{π}{6}})=\frac{1}{3}$.
∴$sin({2x+\frac{π}{6}})$=$sin[{2({x-\frac{π}{6}})+\frac{π}{2}}]=cos2({x-\frac{π}{6}})=1-2{[{sin({x-\frac{π}{6}})}]^2}$=$1-2{({\frac{1}{3}})^2}=\frac{7}{9}$.
(Ⅱ)由$cosC=\frac{2b-c}{2a}$,得2acosC+c=2b.根据正弦定理可得:
$\begin{array}{l}2sinAcosC+sinC=2sinB=2sin(A+C)\\ 2sinAcosC+sinC=2sinAcosC+2cosAsinC\end{array}$
∴$cosA=\frac{1}{2}$,
∴在△ABC中∠$A=\frac{π}{3}$.
∴$0<B<\frac{2π}{3}$,$-\frac{π}{6}<B-\frac{π}{6}<\frac{π}{2}$∴$-\frac{1}{2}<sin({B-\frac{π}{6}})<1$,$0<f(B)<\frac{3}{2}$.
故函数f(B)的取值范围为$({0,\frac{3}{2}})$.

点评 本题考查了向量垂直与数量积的关系、倍角公式、和差公式、正弦定理、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)求函数$y={x^4}-\frac{1}{3}{x^3}$的极值.
(2)求由直线y=x-2和曲线y=-x2所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若x>0,y>0,且x+2y=1,则$\frac{1}{x}$+$\frac{1}{y}$的取值范围是[3+$2\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在200m高的山顶上,测得山下一塔顶和塔底的俯角分别为45°和60°(山脚和塔底在同一水平面内),则塔高为(  )m.
A.$\frac{400\sqrt{2}}{3}$B.$\frac{400\sqrt{3}}{3}$C.$\frac{200(3+\sqrt{3})}{3}$D.$\frac{200(3-\sqrt{3})}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列$\left\{{\frac{a_n}{n}}\right\}$是等差数列;
(2)若Tn=a1-a2+a3-a4+…+(-1)n+1•an,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在极坐标系中,已知两点A,B的极坐标分别为(6,$\frac{π}{3}$),(4,$\frac{π}{6}$),则△AOB(其中O为极点)的面积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.有下列说法:
①函数y=-cos2x的最小正周期是π;
②终边在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④函数f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)可以改写为y=4cos(2x-$\frac{π}{6}$);
⑤函数y=sin(x-$\frac{π}{2}$)在[0,π]上是减函数.
其中,正确的说法是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=(cosθ-isinθ)(1+i),则“θ=$\frac{3π}{4}$”是“z为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=sinx+cosx在点(0,f(0))处的切线方程为x-y+1=0.

查看答案和解析>>

同步练习册答案