精英家教网 > 高中数学 > 题目详情
19.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列$\left\{{\frac{a_n}{n}}\right\}$是等差数列;
(2)若Tn=a1-a2+a3-a4+…+(-1)n+1•an,求Tn

分析 (1)由题意可知得$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}+1$,即$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,$\left\{{\frac{a_n}{n}}\right\}$是以$\frac{a_1}{1}=1$为首项,1为公差的等差数列;
(2)由(1)求得${a_n}={n^2}$,由${T_n}={1^2}-{2^2}+{3^2}-{4^2}+…+{({-1})^n}{({n-1})^2}+{({-1})^{n+1}}•{n^2}$,当n为偶数时及n为奇数时,即可求得Tn

解答 解:(1)证明:由已知可得$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}+1$,即$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,
∴$\left\{{\frac{a_n}{n}}\right\}$是以$\frac{a_1}{1}=1$为首项,1为公差的等差数列.
(2)解:由(1)得$\frac{a_n}{n}=1+({n-1})•1=n$,
∴${a_n}={n^2}$,
∵${T_n}={a_1}-{a_2}+{a_3}-{a_4}+…+{({-1})^{n+1}}•{a_n}$,
∴${T_n}={1^2}-{2^2}+{3^2}-{4^2}+…+{({-1})^n}{({n-1})^2}+{({-1})^{n+1}}•{n^2}$
当n为偶数时,${T_n}=-({3+7+…+2n-1})=-\frac{{n({n+1})}}{2}$;
当n为奇数时,${T_n}=-({3+7+…+2n-3})+{n^2}=\frac{{n({n+1})}}{2}$,
综上,${T_n}={({-1})^{n+1}}\frac{{n({n+1})}}{2}$.

点评 本题考查等差数列的通项公式及数列的前n项和公式,考查分类讨论思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知随机变量ξ的分布列是:
ξ01234
P0.10.20.40.1x
则x=0.2,P(2≤ξ≤4)=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线$\left\{\begin{array}{l}{x=sinθ+tsin15°}\\{y=cosθ-tsin75°}\end{array}\right.$(t为参数,θ是常数)的倾斜角是(  )
A.15°B.75°C.105°D.165°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列结论:
(1)函数y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2是同一函数;
(2)函数f(x-1)的定义域为[1,2],则函数f(3x2)的定义域为[0,$\frac{\sqrt{3}}{3}$];
(3)函数y=log2(x2+2x-2)的递增区间为(-1,+∞);
其中正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一元二次方程ax2+bx+c=0的系数a,b,c恰为双曲线的半实轴长,半虚轴长,半焦距,且此方程无实根,则双曲线离心率e的取值范围是(1,2+$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,-1),当$\overrightarrow{b}$=($\sqrt{3}$cos$\frac{x}{2}$+sin$\frac{x}{2}$,y)当$\overrightarrow{a}$⊥$\overrightarrow{b}$时,有函数y=f(x)
(Ⅰ)若f(x)=$\frac{5}{6}$,求sin(2x+$\frac{π}{6}$)的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足cosC=$\frac{2b-c}{2a}$,求函数f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,c=5,a=7,A=120°,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.根据下列通项能判断数列为等比数列的是(  )
A.an=nB.an=$\sqrt{n}$C.an=2-nD.an=log2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在矩形ABCD中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,点E,F分别是边BC,CD的中点,则($\overrightarrow{AE}$+$\overrightarrow{AF}$)•$\overrightarrow{AC}$=$\frac{15}{2}$.

查看答案和解析>>

同步练习册答案