精英家教网 > 高中数学 > 题目详情

(12分)设函数
(1)求的单调区间;
(2)证明:

解:(1)
列表可得上单调递增,在单调递减;
(2)由(1)知,当上单调递增,在上单调递减,
故当时恒有,即,
,即 .取,
则有
求和得
.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数上的最小值;
(2)若函数上存在单调递增区间,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax+ (a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数f(x)=ax3bx+4,当x=2时,函数f(x)有极值-.
(1)求函数的解析式;
(2)若关于x的方程f(x)=k有三个根,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,都取得极值。
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若曲线处的切线互相平行,求的值;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和
外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成
本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)
满足两个关系:①C(x)=②若不建隔热层,每年能源消耗费用为8万
元。设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式; (4分)
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f (x) 在x = x0处连续是f (x)在x = x0处有定义的_____ 条件  (   )

A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要

查看答案和解析>>

同步练习册答案