(本小题满分10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和
外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成
本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)
满足两个关系:①C(x)=②若不建隔热层,每年能源消耗费用为8万
元。设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式; (4分)
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f;
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)求证:函数在点处的切线恒过定点,并求出定点坐标;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数
有无穷多个.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知函数=在处取得极值.
(1)求实数的值;
(2) 若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;
(3) 证明:.参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com