精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数=处取得极值.
(1)求实数的值;
(2) 若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3) 证明:.参考数据:

解(1),由题意得,的一个极值点,
,即 ……  ………1分
(2) 由(1)得,∴



变化时,的变化情况如下表:














 


极大值

极小值


时,
∵方程上恰有两个不相等的实数根,

(3)∵

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若曲线处的切线互相平行,求的值;
(2)求的单调区间;
(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数f(x)=log3(ax+b)的部分图象如图所示.
(1)求f(x)的解析式与定义域;
(2)函数f(x)能否由y=log3x的图象平移变换得到;
(3)求f(x)在[4,6]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 已知函数处取得极值。
(Ⅰ)求函数的解析式;
Ⅱ)求证:对于区间上任意两个自变量的值,都有
(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

将函数的图象向右平移个单位长度,所得图象对应的函数(   )

A.在区间上单调递减 B.在区间上单调递增
C.在区间上单调递减 D.在区间上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和
外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成
本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)
满足两个关系:①C(x)=②若不建隔热层,每年能源消耗费用为8万
元。设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式; (4分)
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数f (x) 在x = x0处连续是f (x)在x = x0处有定义的_____ 条件  (   )

A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要

查看答案和解析>>

同步练习册答案