精英家教网 > 高中数学 > 题目详情
观察下列各式71=7,72=49,73=343,74=2401,75=16807,…,则72014的末尾两位数是(  )
A、01B、43C、49D、07
考点:归纳推理
专题:规律型
分析:通过观察前几项,发现末两位数字分别为49、43、01、07、…,以4为周期出现重复,由此不难求出72014的末两位数字.
解答: 解:根据题意,得72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801,79=40353607…,
发现:74k-2的末两位数字是49,74k-1的末两位数字是43,74k的末两位数字是01,74k+1的末两位数字是49,(k=1、2、3、4、…)
∵2014=503×4…2,
∴72014的末两位数字为49,
故选:C.
点评:本题以求7n(n≥2)的末两位数字的规律为载体,考查了数列的通项和归纳推理的一般方法的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y+6≥0
x≤3
x+y+k≥0
,且z=2x+4y的最小值为6.
(1)常数k=
 

(2)若实数x∈[-
3
2
,3],y∈[0,9]则点P(x,y)落在上述区域内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是△ABC所在平面外一点,O为点P在平面ABC内的射影,若PA=PB=PC,则点O是△ABC的
 
心.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心”,且‘拐点’就是对称中心.请你将这一发现作为条件.
(1)函数f(x)=x3-3x2+3x的对称中心为
 

(2)若函数g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,则
9
i=1
g(
i
10
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是两个不同的平面,?是一条直线,则下列命题中正确的是(  )
A、若α⊥β,??α,则?⊥β
B、若?∥α,α∥β,则?∥β
C、若?⊥α,?∥β,则α⊥β
D、若α⊥β,?⊥β,则?∥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d为偶数,且0<a<b<c<d,d-a=90,a,b,c成等差数列,b,c,d成等比数列,则a+b+c+d的值为(  )
A、384B、324
C、284D、194

查看答案和解析>>

科目:高中数学 来源: 题型:

由若干个棱长为1的正方体搭成的几何体主视图和俯视图相同(如图所示),现给出如下四个图形,可能为侧视图的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-cosx)(0≤x≤2014π),则函数f(x)的各极小值之和为(  )
A、-
e(1-e2014π)
1-e
B、-
e(1-e1007π)
1-eπ
C、-
e(1-e1007π)
1-e
D、-
e(1-e2012π)
1-e

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱锥A-BCD放置在平面α上,AD=kCD,O是底面△BCD的中心,E是CD的中点,下列说法中,错误的是(  )
A、k>
3
3
B、当AD=CD=1时,将三棱锥绕直线AO旋转一周所形成的几何 体的体积是
6
π
27
C、动点P在截面ABE上运动,且到点B的距离与到点侧面ACD的距离相等,则点P在抛物线弧上
D、当k=
2
2
,CD=1时,将该三棱锥绕棱CD转动,则三棱锥在平面α上投影面积的最大值是
2
2

查看答案和解析>>

同步练习册答案