精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右顶点分别是,点在椭圆上,过该椭圆上任意一点P轴,垂足为Q,点C的延长线上,且

1)求椭圆的方程;

2)求动点C的轨迹E的方程;

3)设直线C点不同AB)与直线交于RD为线段的中点,证明:直线与曲线E相切;

【答案】1;(2;(3)证明略;

【解析】

1)根据顶点坐标可知,将代入椭圆方程可求得,进而得到椭圆方程;(2)设,可得到,将代入椭圆方程即可得到所求的轨迹方程;(3)设,可得直线方程,进而求得点坐标;利用向量坐标运算可求得,从而证得结论.

1)由题意可知:

代入椭圆方程可得:,解得:

椭圆的方程为:

2)设

轴,可得:,即

代入椭圆方程得:

动点的轨迹的方程为:

3)设,则直线方程为:

,解得:

直线与曲线相切

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)当时,求函数的最大值;

2)设,求函数的最大值;

3)已知,求函数的最大值;

4)设,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果A1B1C1的三个内角的余弦值分别等于A2B2C2的三个内角的正弦值,则( )

A.A1B1C1A2B2C2都是锐角三角形

B.A1B1C1A2B2C2都是钝角三角形

C.A1B1C1是钝角三角形,A2B2C2是锐角三角形

D.A1B1C1是锐角三角形,A2B2C2是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,abc分别是角ABC的对边,x=(2acb),y=(cosB,cosC),且x·y=0.

(1)求B的大小;

(2)若b,求||的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为R,函数fx)=lg1x)的定义域为集合A,集合B{x|x2x60}

(Ⅰ)求AB

(Ⅱ)若C{x|m1xm+1}CARB)),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】就实数的取值范围,讨论关于的函数 轴的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为R,的极大值点,以下结论一定正确的是________

的极小值点;

的极小值点;

的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:

答对题目数


8

9



2

13

12

8


3

37

16

9

(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;

(2)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品,每售出一吨可获利万元,每积压一吨则亏损万元.某经销商统计出过去年里市场年需求量的频数分布表如下表所示.

年需求量(吨)

年数

(1)求过去年年需求量的平均值;(每个区间的年需求量用中间值代替)

(2)今年该经销商欲进货吨,以(单位:吨,)表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示的函数解析式,并求今年的年利润不少于万元的概率.

查看答案和解析>>

同步练习册答案