精英家教网 > 高中数学 > 题目详情
9.若函数$f(x)=({1+\sqrt{3}tanx})cosx,-\frac{π}{3}≤x≤\frac{π}{6}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{3}+1$

分析 f(x)=cosx+$\sqrt{3}$sinx=2sin(x+$\frac{π}{6}$),结合-$\frac{π}{3}≤x≤\frac{π}{6}$,得出-$\frac{π}{6}$≤x+$\frac{π}{6}$≤$\frac{π}{3}$,即可得出x=$\frac{π}{3}$时,f(x)的最大值

解答 解:f(x)=cosx+$\sqrt{3}$sinx=2sin(x+$\frac{π}{6}$),
∵-$\frac{π}{3}≤x≤\frac{π}{6}$,
∴-$\frac{π}{6}$≤x+$\frac{π}{6}$≤$\frac{π}{3}$,
∴x=$\frac{π}{3}$时,f(x)的最大值为$\sqrt{3}$,
故选C.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若关于x的不等式ax2+ax+1≥0对任意的实数x恒成立,则a的取值范围是(  )
A.[0,+∞)B.[4,+∞)C.(0,4]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断并证明下列函数的奇偶性:
(1)f(x)=|x+3|-|x-3|;
(2)$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=log0.5(2x2-ax+5)在区间[-1,+∞)上是减函数,则实数a的取值范围是(-7,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:log35+log5${\;}^{\frac{1}{3}}$+log7(49)${\;}^{\frac{1}{3}}$+$\frac{1}{lo{g}_{2}6}$+log53+log63-log315=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(x,y)
(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(2)若x,y在连续区间[1,6]上取值,求满足$\overrightarrow{a}$•$\overrightarrow{b}$<0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,AB=4,AC=2$\sqrt{6}$,$\overrightarrow{AB}$•$\overrightarrow{BC}$=2,则BC=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$是偶函数,则 a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式mx2-mx+1>0对任意实数x都成立,则实数m的取值范围是0≤m<4.

查看答案和解析>>

同步练习册答案